General Information of Drug Off-Target (DOT) (ID: OTDKV2S2)

DOT Name Transaldolase (TALDO1)
Synonyms EC 2.2.1.2
Gene Name TALDO1
Related Disease
Liver cirrhosis ( )
Transaldolase deficiency ( )
Acatalasia ( )
Advanced cancer ( )
Autoimmune disease ( )
Breast cancer ( )
Breast carcinoma ( )
Chronic kidney disease ( )
Diabetic kidney disease ( )
Head-neck squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Hydrops fetalis ( )
leukaemia ( )
Leukemia ( )
Liver failure ( )
Metabolic disorder ( )
Multiple sclerosis ( )
Parkinson disease ( )
Skin cancer ( )
Squamous cell carcinoma ( )
T-cell leukaemia ( )
Xeroderma pigmentosum ( )
Rickets ( )
Sickle-cell anaemia ( )
T-cell acute lymphoblastic leukaemia ( )
Type-1/2 diabetes ( )
UniProt ID
TALDO_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1F05
EC Number
2.2.1.2
Pfam ID
PF00923
Sequence
MSSSPVKRQRMESALDQLKQFTTVVADTGDFHAIDEYKPQDATTNPSLILAAAQMPAYQE
LVEEAIAYGRKLGGSQEDQIKNAIDKLFVLFGAEILKKIPGRVSTEVDARLSFDKDAMVA
RARRLIELYKEAGISKDRILIKLSSTWEGIQAGKELEEQHGIHCNMTLLFSFAQAVACAE
AGVTLISPFVGRILDWHVANTDKKSYEPLEDPGVKSVTKIYNYYKKFSYKTIVMGASFRN
TGEIKALAGCDFLTISPKLLGELLQDNAKLVPVLSAKAAQASDLEKIHLDEKSFRWLHNE
DQMAVEKLSDGIRKFAADAVKLERMLTERMFNAENGK
Function
Catalyzes the rate-limiting step of the non-oxidative phase in the pentose phosphate pathway. Catalyzes the reversible conversion of sedheptulose-7-phosphate and D-glyceraldehyde 3-phosphate into erythrose-4-phosphate and beta-D-fructose 6-phosphate. Not only acts as a pentose phosphate pathway enzyme, but also affects other metabolite pathways by altering its subcellular localization between the nucleus and the cytoplasm.
KEGG Pathway
Pentose phosphate pathway (hsa00030 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Biosynthesis of amino acids (hsa01230 )
Reactome Pathway
TALDO1 deficiency (R-HSA-6791055 )
TALDO1 deficiency (R-HSA-6791462 )
Pentose phosphate pathway (R-HSA-71336 )
Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation (R-HSA-8950505 )
NFE2L2 regulates pentose phosphate pathway genes (R-HSA-9818028 )
Insulin effects increased synthesis of Xylulose-5-Phosphate (R-HSA-163754 )

Molecular Interaction Atlas (MIA) of This DOT

26 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Liver cirrhosis DIS4G1GX Definitive Biomarker [1]
Transaldolase deficiency DIS2FSVR Definitive Autosomal recessive [2]
Acatalasia DISWKSHU Strong Biomarker [3]
Advanced cancer DISAT1Z9 Strong Genetic Variation [4]
Autoimmune disease DISORMTM Strong Biomarker [5]
Breast cancer DIS7DPX1 Strong Altered Expression [6]
Breast carcinoma DIS2UE88 Strong Altered Expression [6]
Chronic kidney disease DISW82R7 Strong Biomarker [7]
Diabetic kidney disease DISJMWEY Strong Biomarker [8]
Head-neck squamous cell carcinoma DISF7P24 Strong Genetic Variation [9]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [10]
Hydrops fetalis DISD9BBF Strong Genetic Variation [1]
leukaemia DISS7D1V Strong Genetic Variation [11]
Leukemia DISNAKFL Strong Genetic Variation [11]
Liver failure DISLGEL6 Strong Biomarker [12]
Metabolic disorder DIS71G5H Strong Biomarker [1]
Multiple sclerosis DISB2WZI Strong Biomarker [13]
Parkinson disease DISQVHKL Strong Biomarker [14]
Skin cancer DISTM18U Strong Altered Expression [3]
Squamous cell carcinoma DISQVIFL Strong Genetic Variation [9]
T-cell leukaemia DISJ6YIF Strong Genetic Variation [15]
Xeroderma pigmentosum DISQ9H19 Strong Altered Expression [3]
Rickets DISH89YF moderate Biomarker [16]
Sickle-cell anaemia DIS5YNZB Limited Biomarker [17]
T-cell acute lymphoblastic leukaemia DIS17AI2 Limited Genetic Variation [18]
Type-1/2 diabetes DISIUHAP Limited Biomarker [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 26 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Transaldolase (TALDO1). [19]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Transaldolase (TALDO1). [20]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Transaldolase (TALDO1). [21]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Transaldolase (TALDO1). [22]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Transaldolase (TALDO1). [23]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Transaldolase (TALDO1). [24]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Transaldolase (TALDO1). [25]
Quercetin DM3NC4M Approved Quercetin increases the expression of Transaldolase (TALDO1). [26]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Transaldolase (TALDO1). [27]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Transaldolase (TALDO1). [28]
Selenium DM25CGV Approved Selenium increases the expression of Transaldolase (TALDO1). [29]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Transaldolase (TALDO1). [30]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Transaldolase (TALDO1). [31]
Hydroquinone DM6AVR4 Approved Hydroquinone affects the expression of Transaldolase (TALDO1). [32]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Transaldolase (TALDO1). [33]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate decreases the expression of Transaldolase (TALDO1). [34]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Transaldolase (TALDO1). [24]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Transaldolase (TALDO1). [24]
Resveratrol DM3RWXL Phase 3 Resveratrol affects the expression of Transaldolase (TALDO1). [35]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Transaldolase (TALDO1). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Transaldolase (TALDO1). [36]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Transaldolase (TALDO1). [37]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone decreases the expression of Transaldolase (TALDO1). [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Transaldolase deficiency: a new cause of hydrops fetalis and neonatal multi-organ disease.J Pediatr. 2006 Nov;149(5):713-7. doi: 10.1016/j.jpeds.2006.08.016.
2 Transaldolase deficiency: liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am J Hum Genet. 2001 May;68(5):1086-92. doi: 10.1086/320108. Epub 2001 Mar 27.
3 Relationship between posttranslational modification of transaldolase and catalase deficiency in UV-sensitive repair-deficient xeroderma pigmentosum fibroblasts and SV40-transformed human cells.Free Radic Biol Med. 2001 Jun 15;30(12):1365-73. doi: 10.1016/s0891-5849(01)00532-9.
4 Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951.Blood. 2004 Jan 15;103(2):442-50. doi: 10.1182/blood-2003-05-1495. Epub 2003 Sep 22.
5 Comparative analysis of antibody and cell-mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis.J Clin Invest. 1997 Mar 15;99(6):1238-50. doi: 10.1172/JCI119281.
6 Synthetic lethality between HER2 and transaldolase in intrinsically resistant HER2-positive breast cancers.Nat Commun. 2018 Oct 15;9(1):4274. doi: 10.1038/s41467-018-06651-x.
7 Sodium bicarbonate loading limits tubular cast formation independent of glomerular injury and proteinuria in Dahl salt-sensitive rats.Clin Sci (Lond). 2018 Jun 20;132(11):1179-1197. doi: 10.1042/CS20171630. Print 2018 Jun 15.
8 Genetic variability in enzymes of metabolic pathways conferring protection against non-enzymatic glycation versus diabetes-related morbidity and mortality.Clin Chem Lab Med. 2014 Jan 1;52(1):77-83. doi: 10.1515/cclm-2012-0833.
9 Genetic variation in Transaldolase 1 and risk of squamous cell carcinoma of the head and neck.Cancer Detect Prev. 2008;32(3):200-8. doi: 10.1016/j.cdp.2008.08.008. Epub 2008 Sep 20.
10 Ribose-5-phosphate isomerase A overexpression promotes liver cancer development in transgenic zebrafish via activation of ERK and -catenin pathways.Carcinogenesis. 2019 May 14;40(3):461-473. doi: 10.1093/carcin/bgy155.
11 The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia.Haematologica. 2012 Sep;97(9):1405-13. doi: 10.3324/haematol.2011.059030. Epub 2012 Apr 4.
12 Transaldolase haploinsufficiency in subjects with acetaminophen-induced liver failure.J Inherit Metab Dis. 2020 May;43(3):496-506. doi: 10.1002/jimd.12197. Epub 2020 Jan 1.
13 The three-dimensional structure of human transaldolase.FEBS Lett. 2000 Jun 23;475(3):205-8. doi: 10.1016/s0014-5793(00)01658-6.
14 Discovery and verification of panels of T-lymphocyte proteins as biomarkers of Parkinson's disease.Sci Rep. 2012;2:953. doi: 10.1038/srep00953. Epub 2012 Dec 11.
15 The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix-loop-helix protein.EMBO J. 1990 Feb;9(2):415-24. doi: 10.1002/j.1460-2075.1990.tb08126.x.
16 Transaldolase deficiency in a two-year-old boy with cirrhosis.Mol Genet Metab. 2008 Jun;94(2):255-8. doi: 10.1016/j.ymgme.2008.01.011. Epub 2008 Mar 10.
17 Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease.Mol Biosyst. 2012 Apr;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub 2012 Feb 3.
18 Genetic rearrangements in relation to immunophenotype and outcome in T-cell acute lymphoblastic leukaemia.Best Pract Res Clin Haematol. 2010 Sep;23(3):307-18. doi: 10.1016/j.beha.2010.08.002. Epub 2010 Oct 30.
19 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
20 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
21 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
22 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
23 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
24 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
25 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
26 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
27 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
28 Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy. 2010 Aug;6(6):711-24. doi: 10.4161/auto.6.6.12397. Epub 2010 Aug 17.
29 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
30 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
31 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
32 Proteomic analysis to identify the cellular responses induced by hydroquinone in human embryonic lung fibroblasts. Toxicol Mech Methods. 2006;16(1):1-6. doi: 10.1080/15376520500191797.
33 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
34 Identification of potential biomarkers for predicting acute dermal irritation by proteomic analysis. J Appl Toxicol. 2011 Nov;31(8):762-72.
35 Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol Biosyst. 2012 Apr;8(4):1078-87. doi: 10.1039/c2mb05486h. Epub 2012 Jan 10.
36 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
37 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
38 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.