General Information of Drug Off-Target (DOT) (ID: OTG4C53Y)

DOT Name RNA-binding protein 26 (RBM26)
Synonyms CTCL tumor antigen se70-2; RNA-binding motif protein 26
Gene Name RBM26
UniProt ID
RBM26_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01480
Sequence
MVSKMIIENFEALKSWLSKTLEPICDADPSALAKYVLALVKKDKSEKELKALCIDQLDVF
LQKETQIFVEKLFDAVNTKSYLPPPEQPSSGSLKVEFFPHQEKDIKKEEITKEEEREKKF
SRRLNHSPPQSSSRYRENRSRDERKKDDRSRKRDYDRNPPRRDSYRDRYNRRRGRSRSYS
RSRSRSWSKERLRERDRDRSRTRSRSRTRSRERDLVKPKYDLDRTDPLENNYTPVSSVPS
ISSGHYPVPTLSSTITVIAPTHHGNNTTESWSEFHEDQVDHNSYVRPPMPKKRCRDYDEK
GFCMRGDMCPFDHGSDPVVVEDVNLPGMLPFPAQPPVVEGPPPPGLPPPPPILTPPPVNL
RPPVPPPGPLPPSLPPVTGPPPPLPPLQPSGMDAPPNSATSSVPTVVTTGIHHQPPPAPP
SLFTADTYDTDGYNPEAPSITNTSRPMYRHRVHAQRPNLIGLTSGDMDLPPREKPPNKSS
MRIVVDSESRKRTIGSGEPGVPTKKTWFDKPNFNRTNSPGFQKKVQFGNENTKLELRKVP
PELNNISKLNEHFSRFGTLVNLQVAYNGDPEGALIQFATYEEAKKAISSTEAVLNNRFIK
VYWHREGSTQQLQTTSPKVMQPLVQQPILPVVKQSVKERLGPVPSSTIEPAEAQSASSDL
PQNVTKLSVKDRLGFVSKPSVSATEKVLSTSTGLTKTVYNPAALKAAQKTLLVSTSAVDN
NEAQKKKQEALKLQQDVRKRKQEILEKHIETQKMLISKLEKNKTMKSEDKAEIMKTLEVL
TKNITKLKDEVKAASPGRCLPKSIKTKTQMQKELLDTELDLYKKMQAGEEVTELRRKYTE
LQLEAAKRGILSSGRGRGIHSRGRGAVHGRGRGRGRGRGVPGHAVVDHRPRALEISAFTE
SDREDLLPHFAQYGEIEDCQIDDSSLHAVITFKTRAEAEAAAVHGARFKGQDLKLAWNKP
VTNISAVETEEVEPDEEEFQEESLVDDSLLQDDDEEEEDNESRSWRR
Function May be involved in the turnover of nuclear polyadenylated (pA+) RNA.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of RNA-binding protein 26 (RBM26). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of RNA-binding protein 26 (RBM26). [10]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of RNA-binding protein 26 (RBM26). [11]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of RNA-binding protein 26 (RBM26). [12]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of RNA-binding protein 26 (RBM26). [12]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of RNA-binding protein 26 (RBM26). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of RNA-binding protein 26 (RBM26). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of RNA-binding protein 26 (RBM26). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of RNA-binding protein 26 (RBM26). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of RNA-binding protein 26 (RBM26). [6]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of RNA-binding protein 26 (RBM26). [7]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of RNA-binding protein 26 (RBM26). [8]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of RNA-binding protein 26 (RBM26). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of RNA-binding protein 26 (RBM26). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of RNA-binding protein 26 (RBM26). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of RNA-binding protein 26 (RBM26). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of RNA-binding protein 26 (RBM26). [9]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
10 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
11 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
12 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
13 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
14 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep. 2016 Dec 1;6:37842. doi: 10.1038/srep37842.