General Information of Drug Off-Target (DOT) (ID: OTKV8BMJ)

DOT Name RPA-related protein RADX (RADX)
Synonyms RPA-related and RAD51-antagonist, X-chromosome
Gene Name RADX
UniProt ID
RADX_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8U5Y
Pfam ID
PF17659
Sequence
MSGESGQPEAGPSHAGLDWPNPERNRAGVPGGVIRRAGSQGPRSWIQKVLEQIMDSPRQC
VTPSEVVPVTVLAVQRYLLEDEPRDTVPKPPLYCYDVTISDGVYQEKCYLDPSLNSLVYQ
NILKVGIQMRISRVSCLYNEKRIGQGILCIDNVHCGETSDSISLETPFRNRAHQEKPERP
LRGGKSHYLALWNNEDPYGDIWLTDKQPEEHNFSDTKIISLSHLEMTWTNRRNFPALLVR
ILHKSKLRYYGKPDKKMIEPYQTFLEVADSSGTVSVIMWNALCPEWYKSLRVGLVLLLQD
YSVKKSYPFRIQPVPVDPQIKLISTMEICLNLRDPPTNIIIIPEKQVKPEWRLPKLNHRF
TTRSELDDMPENCICDVIGLLVFVGRVQRSKKKENREDFWSYRWIHIADGTSEQPFIVEL
FSTSQPEIFENIYPMAYFVCTQLKVVRNDNQVPKLLYLTTTNESGVFITGHRGQPYTYDA
KVKNFIQWIRTKSDSGEQKNMVIGGYYPYPPVPETFSKYSSSIKVESLLTAISEVRKEIE
DLQYREQKRIAIQGIITAIKYIPHSSATESASASETLRNANRPSTSQAARVEIQERNGKR
HQDDEPVNSQYFQTTSTNLSLSNKIRILQGPHANPVAVPQPGASVQTKGIKPGMPSIFNR
RANINANLQGKARKTISDRWESQLWREKKFGLIDHLHYSRVYPESIPRKFMFEHRKFLSD
QYNSQPAKYVPPEGRPPKLDDFKSARSLGHFEVTILGLNHEIAIDVAFLPMYCPEDIRTS
QIDTLLTSMNYSCAYPQDTTGNDRLPGPRAVAGDIIKAATELDRVHIVGILDICNLGNNK
VEVYLHKIYSPENTS
Function
Single-stranded DNA-binding protein recruited to replication forks to maintain genome stability. Prevents fork collapse by antagonizing the accumulation of RAD51 at forks to ensure the proper balance of fork remodeling and protection without interfering with the capacity of cells to complete homologous recombination of double-strand breaks.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of RPA-related protein RADX (RADX). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of RPA-related protein RADX (RADX). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of RPA-related protein RADX (RADX). [11]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of RPA-related protein RADX (RADX). [2]
Quercetin DM3NC4M Approved Quercetin affects the expression of RPA-related protein RADX (RADX). [4]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of RPA-related protein RADX (RADX). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of RPA-related protein RADX (RADX). [6]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of RPA-related protein RADX (RADX). [7]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of RPA-related protein RADX (RADX). [8]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of RPA-related protein RADX (RADX). [9]
Melphalan DMOLNHF Approved Melphalan decreases the expression of RPA-related protein RADX (RADX). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of RPA-related protein RADX (RADX). [12]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of RPA-related protein RADX (RADX). [13]
Milchsaure DM462BT Investigative Milchsaure increases the expression of RPA-related protein RADX (RADX). [14]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of RPA-related protein RADX (RADX). [15]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of RPA-related protein RADX (RADX). [16]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of RPA-related protein RADX (RADX). [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
4 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
10 Bone marrow osteoblast damage by chemotherapeutic agents. PLoS One. 2012;7(2):e30758. doi: 10.1371/journal.pone.0030758. Epub 2012 Feb 17.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
13 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
14 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
15 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
16 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.