General Information of Drug Off-Target (DOT) (ID: OTP8NJFJ)

DOT Name 14-3-3 protein eta
Synonyms Protein AS1
Gene Name YWHAH
UniProt ID
1433F_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2C63; 2C74; 7NMZ
Pfam ID
PF00244
Sequence
MGDREQLLQRARLAEQAERYDDMASAMKAVTELNEPLSNEDRNLLSVAYKNVVGARRSSW
RVISSIEQKTMADGNEKKLEKVKAYREKIEKELETVCNDVLSLLDKFLIKNCNDFQYESK
VFYLKMKGDYYRYLAEVASGEKKNSVVEASEAAYKEAFEISKEQMQPTHPIRLGLALNFS
VFYYEIQNAPEQACLLAKQAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQDE
EAGEGN
Function
Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1.
Tissue Specificity Expressed mainly in the brain and present in other tissues albeit at lower levels.
KEGG Pathway
Cell cycle (hsa04110 )
Oocyte meiosis (hsa04114 )
PI3K-Akt sig.ling pathway (hsa04151 )
Hippo sig.ling pathway (hsa04390 )
Hepatitis C (hsa05160 )
Viral carcinogenesis (hsa05203 )
Reactome Pathway
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )
RHO GTPases activate PKNs (R-HSA-5625740 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Chk1/Chk2(Cds1) mediated inactivation of Cyclin B (R-HSA-75035 )
SARS-CoV-1 targets host intracellular signalling and regulatory pathways (R-HSA-9735871 )
SARS-CoV-2 targets host intracellular signalling and regulatory pathways (R-HSA-9755779 )
Activation of BAD and translocation to mitochondria (R-HSA-111447 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved 14-3-3 protein eta decreases the response to substance of Doxorubicin. [14]
Fluorouracil DMUM7HZ Approved 14-3-3 protein eta decreases the response to substance of Fluorouracil. [14]
PEITC DMOMN31 Phase 2 14-3-3 protein eta affects the binding of PEITC. [15]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of 14-3-3 protein eta. [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of 14-3-3 protein eta. [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of 14-3-3 protein eta. [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 14-3-3 protein eta. [4]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of 14-3-3 protein eta. [5]
DTI-015 DMXZRW0 Approved DTI-015 decreases the expression of 14-3-3 protein eta. [6]
Cocaine DMSOX7I Approved Cocaine decreases the expression of 14-3-3 protein eta. [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of 14-3-3 protein eta. [8]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of 14-3-3 protein eta. [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 14-3-3 protein eta. [10]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of 14-3-3 protein eta. [11]
Milchsaure DM462BT Investigative Milchsaure increases the expression of 14-3-3 protein eta. [12]
4-hydroxy-2-nonenal DM2LJFZ Investigative 4-hydroxy-2-nonenal decreases the expression of 14-3-3 protein eta. [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: focus on PI3K/Akt signaling pathway. Chem Biol Interact. 2013 Oct 5;205(3):198-211. doi: 10.1016/j.cbi.2013.07.011. Epub 2013 Aug 2.
6 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
7 Transcriptional profiling in the human prefrontal cortex: evidence for two activational states associated with cocaine abuse. Pharmacogenomics J. 2003;3(1):27-40.
8 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
9 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
10 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
11 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
12 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
13 Microarray analysis of H2O2-, HNE-, or tBH-treated ARPE-19 cells. Free Radic Biol Med. 2002 Nov 15;33(10):1419-32.
14 Arsenic trioxide reverses the chemoresistance in hepatocellular carcinoma: a targeted intervention of 14-3-3/NF-B feedback loop. J Exp Clin Cancer Res. 2018 Dec 20;37(1):321. doi: 10.1186/s13046-018-1005-y.
15 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.