General Information of Drug Off-Target (DOT) (ID: OTPLGI0E)

DOT Name Fractalkine (CX3CL1)
Synonyms C-X3-C motif chemokine 1; CX3C membrane-anchored chemokine; Neurotactin; Small-inducible cytokine D1
Gene Name CX3CL1
UniProt ID
X3CL1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1B2T; 1F2L; 3ONA; 4XT1; 4XT3; 5WB2; 7RKF; 7RKM; 7RKN; 7XBX
Pfam ID
PF00048
Sequence
MAPISLSWLLRLATFCHLTVLLAGQHHGVTKCNITCSKMTSKIPVALLIHYQQNQASCGK
RAIILETRQHRLFCADPKEQWVKDAMQHLDRQAAALTRNGGTFEKQIGEVKPRTTPAAGG
MDESVVLEPEATGESSSLEPTPSSQEAQRALGTSPELPTGVTGSSGTRLPPTPKAQDGGP
VGTELFRVPPVSTAATWQSSAPHQPGPSLWAEAKTSEAPSTQDPSTQASTASSPAPEENA
PSEGQRVWGQGQSPRPENSLEREEMGPVPAHTDAFQDWGPGSMAHVSVVPVSSEGTPSRE
PVASGSWTPKAEEPIHATMDPQRLGVLITPVPDAQAATRRQAVGLLAFLGLLFCLGVAMF
TYQSLQGCPRKMAGEMAEGLRYIPRSCGSNSYVLVPV
Function
Chemokine that acts as a ligand for both CX3CR1 and integrins ITGAV:ITGB3 and ITGA4:ITGB1. The CX3CR1-CX3CL1 signaling exerts distinct functions in different tissue compartments, such as immune response, inflammation, cell adhesion and chemotaxis. Regulates leukocyte adhesion and migration processes at the endothelium. Can activate integrins in both a CX3CR1-dependent and CX3CR1-independent manner. In the presence of CX3CR1, activates integrins by binding to the classical ligand-binding site (site 1) in integrins. In the absence of CX3CR1, binds to a second site (site 2) in integrins which is distinct from site 1 and enhances the binding of other integrin ligands to site 1 ; [Processed fractalkine]: The soluble form is chemotactic for T-cells and monocytes, but not for neutrophils; [Fractalkine]: The membrane-bound form promotes adhesion of those leukocytes to endothelial cells; (Microbial infection) Mediates the cytoadherence of erythrocytes infected with parasite P.falciparum (strain 3D7) with endothelial cells by interacting with P.falciparum CBP1 and CBP2 expressed at the surface of erythrocytes. The adhesion prevents the elimination of infected erythrocytes by the spleen (Probable).
Tissue Specificity
Expressed in the seminal plasma, endometrial fluid and follicular fluid (at protein level). Small intestine, colon, testis, prostate, heart, brain, lung, skeletal muscle, kidney and pancreas. Most abundant in the brain and heart.
KEGG Pathway
Cytokine-cytokine receptor interaction (hsa04060 )
Viral protein interaction with cytokine and cytokine receptor (hsa04061 )
Chemokine sig.ling pathway (hsa04062 )
Efferocytosis (hsa04148 )
TNF sig.ling pathway (hsa04668 )
Human cytomegalovirus infection (hsa05163 )
Reactome Pathway
G alpha (i) signalling events (R-HSA-418594 )
Chemokine receptors bind chemokines (R-HSA-380108 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Fractalkine (CX3CL1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Fractalkine (CX3CL1). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Fractalkine (CX3CL1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Fractalkine (CX3CL1). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Fractalkine (CX3CL1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Fractalkine (CX3CL1). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Fractalkine (CX3CL1). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Fractalkine (CX3CL1). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Fractalkine (CX3CL1). [9]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Fractalkine (CX3CL1). [10]
Triclosan DMZUR4N Approved Triclosan increases the expression of Fractalkine (CX3CL1). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Fractalkine (CX3CL1). [12]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Fractalkine (CX3CL1). [13]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Fractalkine (CX3CL1). [14]
Mifepristone DMGZQEF Approved Mifepristone increases the expression of Fractalkine (CX3CL1). [16]
Ibuprofen DM8VCBE Approved Ibuprofen affects the expression of Fractalkine (CX3CL1). [17]
Rofecoxib DM3P5DA Approved Rofecoxib affects the expression of Fractalkine (CX3CL1). [17]
Fructose DM43AN2 Approved Fructose increases the expression of Fractalkine (CX3CL1). [18]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of Fractalkine (CX3CL1). [19]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate decreases the expression of Fractalkine (CX3CL1). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Fractalkine (CX3CL1). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Fractalkine (CX3CL1). [23]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Fractalkine (CX3CL1). [24]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Fractalkine (CX3CL1). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Rosiglitazone DMILWZR Approved Rosiglitazone affects the localization of Fractalkine (CX3CL1). [15]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Fractalkine (CX3CL1). [20]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Fractalkine (CX3CL1). [22]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Classification of heavy-metal toxicity by human DNA microarray analysis. Environ Sci Technol. 2007 May 15;41(10):3769-74.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Rosiglitazone activation of PPARgamma suppresses fractalkine signaling. J Mol Endocrinol. 2010 Feb;44(2):135-42. doi: 10.1677/JME-09-0090. Epub 2009 Oct 22.
16 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
17 Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain. Pain. 2007 Mar;128(1-2):136-47.
18 Non-nutritional sweeteners effects on endothelial vascular function. Toxicol In Vitro. 2020 Feb;62:104694. doi: 10.1016/j.tiv.2019.104694. Epub 2019 Oct 23.
19 Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013 Feb;27(1):37-48. doi: 10.1007/s10557-012-6427-8.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
22 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
23 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
24 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
25 High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thromb Haemost. 2008 Dec;100(6):1155-65.