General Information of Drug Off-Target (DOT) (ID: OTUCMVCX)

DOT Name Macrophage migration inhibitory factor (MIF)
Synonyms MIF; EC 5.3.2.1; Glycosylation-inhibiting factor; GIF; L-dopachrome isomerase; L-dopachrome tautomerase; EC 5.3.3.12; Phenylpyruvate tautomerase
Gene Name MIF
UniProt ID
MIF_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CA7 ; 1CGQ ; 1GCZ ; 1GD0 ; 1GIF ; 1LJT ; 1MIF ; 1P1G ; 2OOH ; 2OOW ; 2OOZ ; 3B9S ; 3CE4 ; 3DJH ; 3DJI ; 3HOF ; 3IJG ; 3IJJ ; 3JSF ; 3JSG ; 3JTU ; 3L5P ; 3L5R ; 3L5S ; 3L5T ; 3L5U ; 3L5V ; 3SMB ; 3SMC ; 3U18 ; 3WNR ; 3WNS ; 3WNT ; 4ETG ; 4EUI ; 4EVG ; 4F2K ; 4GRN ; 4GRO ; 4GRP ; 4GRQ ; 4GRR ; 4GRU ; 4GUM ; 4K9G ; 4OSF ; 4OYQ ; 4P01 ; 4P0H ; 4PKK ; 4PKZ ; 4PLU ; 4TRF ; 4TRU ; 4WR8 ; 4WRB ; 4XX7 ; 4XX8 ; 4Z15 ; 4Z1T ; 4Z1U ; 5B4O ; 5BS9 ; 5BSC ; 5BSI ; 5BSJ ; 5EIZ ; 5HVS ; 5HVT ; 5HVV ; 5J7P ; 5J7Q ; 5UMJ ; 5UMK ; 5UZY ; 5V70 ; 5V73 ; 5XEJ ; 6B1C ; 6B1K ; 6B2C ; 6BG6 ; 6BG7 ; 6CB5 ; 6CBF ; 6CBG ; 6CBH ; 6FVE ; 6FVH ; 6OY8 ; 6OYB ; 6OYE ; 6OYG ; 6PEG ; 7E45 ; 7E47 ; 7E49 ; 7E4A ; 7E4B ; 7E4C ; 7KQX ; 7XTX ; 7XVX
EC Number
5.3.2.1; 5.3.3.12
Pfam ID
PF01187
Sequence
MPMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALC
SLHSIGKIGGAQNRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA
Function
Pro-inflammatory cytokine involved in the innate immune response to bacterial pathogens. The expression of MIF at sites of inflammation suggests a role as mediator in regulating the function of macrophages in host defense. Counteracts the anti-inflammatory activity of glucocorticoids. Has phenylpyruvate tautomerase and dopachrome tautomerase activity (in vitro), but the physiological substrate is not known. It is not clear whether the tautomerase activity has any physiological relevance, and whether it is important for cytokine activity.
KEGG Pathway
Tyrosine metabolism (hsa00350 )
Phenylalanine metabolism (hsa00360 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )
Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation (R-HSA-8950505 )
Cell surface interactions at the vascular wall (R-HSA-202733 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Amphotericin B DMTAJQE Approved Macrophage migration inhibitory factor (MIF) increases the Cell death ADR of Amphotericin B. [24]
Ardeparin DMYRX8B Approved Macrophage migration inhibitory factor (MIF) affects the binding of Ardeparin. [25]
------------------------------------------------------------------------------------
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Macrophage migration inhibitory factor (MIF). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Macrophage migration inhibitory factor (MIF). [2]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Macrophage migration inhibitory factor (MIF). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Macrophage migration inhibitory factor (MIF). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Macrophage migration inhibitory factor (MIF). [5]
Arsenic DMTL2Y1 Approved Arsenic affects the expression of Macrophage migration inhibitory factor (MIF). [6]
Quercetin DM3NC4M Approved Quercetin increases the expression of Macrophage migration inhibitory factor (MIF). [7]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Macrophage migration inhibitory factor (MIF). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Macrophage migration inhibitory factor (MIF). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Macrophage migration inhibitory factor (MIF). [1]
Folic acid DMEMBJC Approved Folic acid affects the expression of Macrophage migration inhibitory factor (MIF). [11]
Benzatropine DMF7EXL Approved Benzatropine increases the expression of Macrophage migration inhibitory factor (MIF). [12]
Tanespimycin DMNLQHK Phase 2 Tanespimycin decreases the expression of Macrophage migration inhibitory factor (MIF). [13]
PMID26560530-Compound-35 DMO36RL Patented PMID26560530-Compound-35 increases the expression of Macrophage migration inhibitory factor (MIF). [16]
Clioquinol DM746BZ Withdrawn from market Clioquinol increases the expression of Macrophage migration inhibitory factor (MIF). [17]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Macrophage migration inhibitory factor (MIF). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Macrophage migration inhibitory factor (MIF). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Macrophage migration inhibitory factor (MIF). [20]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Macrophage migration inhibitory factor (MIF). [22]
Rutin DMEHRAJ Investigative Rutin increases the expression of Macrophage migration inhibitory factor (MIF). [23]
CATECHIN DMY38SB Investigative CATECHIN decreases the expression of Macrophage migration inhibitory factor (MIF). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the secretion of Macrophage migration inhibitory factor (MIF). [10]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the secretion of Macrophage migration inhibitory factor (MIF). [21]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Macrophage migration inhibitory factor (MIF). [14]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Macrophage migration inhibitory factor (MIF). [15]
------------------------------------------------------------------------------------

References

1 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
2 Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007 May 15;109(10):4450-60.
3 Expression Profiling of Human Pluripotent Stem Cell-Derived Cardiomyocytes Exposed to Doxorubicin-Integration and Visualization of Multi-Omics Data. Toxicol Sci. 2018 May 1;163(1):182-195. doi: 10.1093/toxsci/kfy012.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Prenatal arsenic exposure and shifts in the newborn proteome: interindividual differences in tumor necrosis factor (TNF)-responsive signaling. Toxicol Sci. 2014 Jun;139(2):328-37. doi: 10.1093/toxsci/kfu053. Epub 2014 Mar 27.
7 Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells. Exp Eye Res. 2009 Dec;89(6):995-1002. doi: 10.1016/j.exer.2009.08.011. Epub 2009 Sep 1.
8 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
9 Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009 Jun;8(6):3006-19.
10 Chronic senescent human mesenchymal stem cells as possible contributor to the wound healing disorder after exposure to the alkylating agent sulfur mustard. Arch Toxicol. 2021 Feb;95(2):727-747. doi: 10.1007/s00204-020-02946-5. Epub 2021 Jan 25.
11 Folate deficiency in normal human fibroblasts leads to altered expression of genes primarily linked to cell signaling, the cytoskeleton and extracellular matrix. J Nutr Biochem. 2007 Aug;18(8):541-52. doi: 10.1016/j.jnutbio.2006.11.002. Epub 2007 Feb 22.
12 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
13 Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry. Cells. 2019 Jul 31;8(8):806. doi: 10.3390/cells8080806.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Rottlerin impairs early and late steps of Toxoplasma gondii infection in human trophoblast cells and villous explants. Chem Biol Interact. 2023 Oct 1;384:110716. doi: 10.1016/j.cbi.2023.110716. Epub 2023 Sep 16.
17 Identification of chemical compounds that induce HIF-1alpha activity. Toxicol Sci. 2009 Nov;112(1):153-63.
18 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
19 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
21 Formaldehyde Gas Exposure Increases Inflammation in an In Vitro Model of Dry Eye. Toxicol Sci. 2018 Sep 1;165(1):108-117. doi: 10.1093/toxsci/kfy125.
22 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
23 Epicatechin and a cocoa polyphenolic extract modulate gene expression in human Caco-2 cells. J Nutr. 2004 Oct;134(10):2509-16.
24 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
25 Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells. Biochim Biophys Acta. 2016 Apr;1863(4):717-26. doi: 10.1016/j.bbamcr.2016.02.003. Epub 2016 Feb 4.