General Information of Drug Off-Target (DOT) (ID: OTWHCL4U)

DOT Name Nucleotide sugar transporter SLC35D2 (SLC35D2)
Synonyms Homolog of Fringe connection protein 1; HFRC1; SQV7-like protein; SQV7L; Solute carrier family 35 member D2; UDP-galactose transporter-related protein 8; UGTrel8
Gene Name SLC35D2
UniProt ID
S35D2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03151
Sequence
MTAGGQAEAEGAGGEPGAARLPSRVARLLSALFYGTCSFLIVLVNKALLTTYGFPSPIFL
GIGQMAATIMILYVSKLNKIIHFPDFDKKIPVKLFPLPLLYVGNHISGLSSTSKLSLPMF
TVLRKFTIPLTLLLETIILGKQYSLNIILSVFAIILGAFIAAGSDLAFNLEGYIFVFLND
IFTAANGVYTKQKMDPKELGKYGVLFYNACFMIIPTLIISVSTGDLQQATEFNQWKNVVF
ILQFLLSCFLGFLLMYSTVLCSYYNSALTTAVVGAIKNVSVAYIGILIGGDYIFSLLNFV
GLNICMAGGLRYSFLTLSSQLKPKPVGEENICLDLKS
Function
Nucleotide sugar antiporter transporting UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucose (UDP-Glc) from the cytosol into the lumen of the Golgi in exchange of UMP. By supplying UDP-N-acetylglucosamine, a donor substrate to heparan sulfate synthases, probably takes part in the synthesis of these glycoconjugates.
Tissue Specificity Highly expressed in heart, kidney, small intestine, placenta, lung and peripheral blood leukocyte. Weakly expressed in skeletal muscle and spleen. Not expressed in brain, colon and thymus.
Reactome Pathway
HS-GAG biosynthesis (R-HSA-2022928 )
Transport of nucleotide sugars (R-HSA-727802 )
Keratan sulfate biosynthesis (R-HSA-2022854 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
3-iodothyronamine DM3L0F8 Investigative Nucleotide sugar transporter SLC35D2 (SLC35D2) affects the uptake of 3-iodothyronamine. [13]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [5]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [6]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [9]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [10]
T83193 DMHO29Y Patented T83193 decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [11]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [12]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde decreases the expression of Nucleotide sugar transporter SLC35D2 (SLC35D2). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development. PLoS One. 2013;8(3):e58822.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
8 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
9 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Antimutagenicity of cinnamaldehyde and vanillin in human cells: Global gene expression and possible role of DNA damage and repair. Mutat Res. 2007 Mar 1;616(1-2):60-9. doi: 10.1016/j.mrfmmm.2006.11.022. Epub 2006 Dec 18.
12 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
13 Identification and characterization of 3-iodothyronamine intracellular transport. Endocrinology. 2009 Apr;150(4):1991-9.