General Information of Drug Off-Target (DOT) (ID: OTZDX6PT)

DOT Name Serine palmitoyltransferase 3 (SPTLC3)
Synonyms EC 2.3.1.50; Long chain base biosynthesis protein 2b; LCB2b; Long chain base biosynthesis protein 3; LCB 3; Serine-palmitoyl-CoA transferase 3; SPT 3
Gene Name SPTLC3
Related Disease
Head-neck squamous cell carcinoma ( )
Peripheral neuropathy ( )
Peripheral sensory neuropathies ( )
Autosomal dominant cerebellar ataxia type II ( )
UniProt ID
SPTC3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.3.1.50
Pfam ID
PF00155
Sequence
MANPGGGAVCNGKLHNHKKQSNGSQSRNCTKNGIVKEAQQNGKPHFYDKLIVESFEEAPL
HVMVFTYMGYGIGTLFGYLRDFLRNWGIEKCNAAVERKEQKDFVPLYQDFENFYTRNLYM
RIRDNWNRPICSAPGPLFDLMERVSDDYNWTFRFTGRVIKDVINMGSYNFLGLAAKYDES
MRTIKDVLEVYGTGVASTRHEMGTLDKHKELEDLVAKFLNVEAAMVFGMGFATNSMNIPA
LVGKGCLILSDELNHTSLVLGARLSGATIRIFKHNNTQSLEKLLRDAVIYGQPRTRRAWK
KILILVEGVYSMEGSIVHLPQIIALKKKYKAYLYIDEAHSIGAVGPTGRGVTEFFGLDPH
EVDVLMGTFTKSFGASGGYIAGRKDLVDYLRVHSHSAVYASSMSPPIAEQIIRSLKLIMG
LDGTTQGLQRVQQLAKNTRYFRQRLQEMGFIIYGNENASVVPLLLYMPGKVAAFARHMLE
KKIGVVVVGFPATPLAEARARFCVSAAHTREMLDTVLEALDEMGDLLQLKYSRHKKSARP
ELYDETSFELED
Function
Component of the serine palmitoyltransferase multisubunit enzyme (SPT) that catalyzes the initial and rate-limiting step in sphingolipid biosynthesis by condensing L-serine and activated acyl-CoA (most commonly palmitoyl-CoA) to form long-chain bases. The SPT complex is composed of SPTLC1, SPTLC2 or SPTLC3 and SPTSSA or SPTSSB. Within this complex, the heterodimer consisting of SPTLC1 and SPTLC2/SPTLC3 forms the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to use a broader range of acyl-CoAs, without apparent preference.
Tissue Specificity Expressed in most tissues, except peripheral blood cells and bone marrow, with highest levels in heart, kidney, liver, uterus and skin.
KEGG Pathway
Sphingolipid metabolism (hsa00600 )
Metabolic pathways (hsa01100 )
Sphingolipid sig.ling pathway (hsa04071 )
Reactome Pathway
Sphingolipid de novo biosynthesis (R-HSA-1660661 )
BioCyc Pathway
MetaCyc:HS16070-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Head-neck squamous cell carcinoma DISF7P24 Strong Altered Expression [1]
Peripheral neuropathy DIS7KN5G Strong Genetic Variation [2]
Peripheral sensory neuropathies DISYWI6M Strong Genetic Variation [2]
Autosomal dominant cerebellar ataxia type II DIS0PM39 Limited Biomarker [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
21 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Serine palmitoyltransferase 3 (SPTLC3). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [9]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [10]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [11]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [12]
Cytarabine DMZD5QR Approved Cytarabine decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [13]
Nicotine DMWX5CO Approved Nicotine increases the expression of Serine palmitoyltransferase 3 (SPTLC3). [14]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [15]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [5]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Serine palmitoyltransferase 3 (SPTLC3). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Serine palmitoyltransferase 3 (SPTLC3). [20]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [21]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [22]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Serine palmitoyltransferase 3 (SPTLC3). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Drug(s)

References

1 p38 MAPK mediates epithelial-mesenchymal transition by regulating p38IP and Snail in head and neck squamous cell carcinoma.Oral Oncol. 2016 Sep;60:81-9. doi: 10.1016/j.oraloncology.2016.06.010. Epub 2016 Jul 15.
2 Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy.Cell Rep. 2015 Aug 18;12(7):1169-83. doi: 10.1016/j.celrep.2015.07.023. Epub 2015 Aug 6.
3 Posttranslational modification of ataxin-7 at lysine 257 prevents autophagy-mediated turnover of an N-terminal caspase-7 cleavage fragment.J Neurosci. 2009 Dec 2;29(48):15134-44. doi: 10.1523/JNEUROSCI.4720-09.2009.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
12 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
13 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
14 Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. PLoS One. 2013 Jun 18;8(6):e67252.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
17 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Bisphenol A and bisphenol S induce distinct transcriptional profiles in differentiating human primary preadipocytes. PLoS One. 2016 Sep 29;11(9):e0163318.
20 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
21 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
22 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
23 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.