General Information of Drug Combination (ID: DCQJZ2Q)

Drug Combination Name
Vandetanib Mercaptopurine
Indication
Disease Entry Status REF
Amelanotic melanoma Investigative [1]
Component Drugs Vandetanib   DMRICNP Mercaptopurine   DMTM2IK
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: M14
Zero Interaction Potency (ZIP) Score: 3.11
Bliss Independence Score: 3.7
Loewe Additivity Score: 0.88
LHighest Single Agent (HSA) Score: 0.25

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Vandetanib
Disease Entry ICD 11 Status REF
Solid tumour/cancer 2A00-2F9Z Approved [2]
Vandetanib Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [7]
Proto-oncogene c-Ret (RET) TT4DXQT RET_HUMAN Inhibitor [7]
Vascular endothelial growth factor receptor 2 (KDR) TTUTJGQ VGFR2_HUMAN Inhibitor [7]
------------------------------------------------------------------------------------
Vandetanib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [8]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [9]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Vandetanib Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [10]
------------------------------------------------------------------------------------
Vandetanib Interacts with 34 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Phosphorylation [11]
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) OTKOZRZP PLOD2_HUMAN Increases Expression [12]
Stearoyl-CoA desaturase (SCD) OTB1073G SCD_HUMAN Increases Expression [12]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [12]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L) OTJKOMXE BNI3L_HUMAN Increases Expression [12]
Protein FAM13A (FAM13A) OTZ6GN0Q FA13A_HUMAN Increases Expression [12]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Activity [13]
Phosphoglycerate kinase 1 (PGK1) OT6V1ICH PGK1_HUMAN Increases Expression [12]
Calbindin (CALB1) OTM7IXDG CALB1_HUMAN Increases Expression [12]
Prothymosin alpha (PTMA) OT2W4T1M PTMA_HUMAN Decreases Expression [12]
Trypsin-2 (PRSS2) OTOMVUWL TRY2_HUMAN Increases Expression [12]
Insulin-like growth factor-binding protein 1 (IGFBP1) OT6UQV2K IBP1_HUMAN Increases Expression [12]
Gamma-enolase (ENO2) OTRODL0T ENOG_HUMAN Increases Expression [12]
Solute carrier family 2, facilitated glucose transporter member 3 (SLC2A3) OT2HZK5M GTR3_HUMAN Increases Expression [12]
Mucin-1 (MUC1) OTHQI7IY MUC1_HUMAN Increases Expression [12]
Histone H1.2 (H1-2) OT0AVI4M H12_HUMAN Increases Expression [12]
Insulin-like growth factor-binding protein 3 (IGFBP3) OTIX63TX IBP3_HUMAN Increases Expression [12]
DNA mismatch repair protein Msh3 (MSH3) OTD3YPVL MSH3_HUMAN Decreases Expression [12]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [14]
Dual specificity protein phosphatase 1 (DUSP1) OTN6BR75 DUS1_HUMAN Increases Expression [12]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [15]
Pro-adrenomedullin (ADM) OT7T0TA4 ADML_HUMAN Increases Expression [12]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [15]
Collagen alpha-3(IV) chain (COL4A3) OT6SB8X5 CO4A3_HUMAN Increases Expression [12]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Expression [16]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [15]
Solute carrier family 2, facilitated glucose transporter member 14 (SLC2A14) OTBFIOVY GTR14_HUMAN Increases Expression [12]
Protein NDRG1 (NDRG1) OTVO66BO NDRG1_HUMAN Increases Expression [12]
TSC22 domain family protein 3 (TSC22D3) OT03UM03 T22D3_HUMAN Increases Expression [12]
Angiopoietin-related protein 4 (ANGPTL4) OTQL5SPX ANGL4_HUMAN Increases Expression [12]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [17]
Lysine-specific demethylase 3A (KDM3A) OTZYJ8VN KDM3A_HUMAN Increases Expression [12]
Hypoxia-inducible lipid droplet-associated protein (HILPDA) OTEID3ZM HLPDA_HUMAN Increases Expression [12]
Insulin-induced gene 2 protein (INSIG2) OTX4VY51 INSI2_HUMAN Increases Expression [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 DOT(s)
Indication(s) of Mercaptopurine
Disease Entry ICD 11 Status REF
Acute lymphoblastic leukaemia 2A85 Approved [3]
Acute lymphocytic leukaemia 2B33.3 Approved [4]
Crohn disease DD70 Phase 4 [5]
Middle East Respiratory Syndrome (MERS) 1D64 Preclinical [6]
Severe acute respiratory syndrome (SARS) 1D65 Preclinical [6]
Mercaptopurine Interacts with 4 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
MERS-CoV papain-like proteinase (PL-PRO) TTYJOLE R1AB_CVEMC (854-2740) Inhibitor [6]
Inosine-5'-monophosphate dehydrogenase 1 (IMPDH1) TTL7C8Q IMDH1_HUMAN Inhibitor [20]
SARS-CoV papain-like proteinase (PL-PRO) TTRGHB2 R1AB_CVHSA (819-2740) Inhibitor [6]
Amidophosphoribosyltransferase (PPAT) TTZFTY4 PUR1_HUMAN Breaker [21]
------------------------------------------------------------------------------------
Mercaptopurine Interacts with 9 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [22]
Multidrug resistance-associated protein 4 (ABCC4) DTCSGPB MRP4_HUMAN Substrate [23]
Multidrug resistance-associated protein 5 (ABCC5) DTYVM24 MRP5_HUMAN Substrate [24]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [25]
Concentrative nucleoside transporter 2 (SLC28A2) DT82KPY S28A2_HUMAN Substrate [26]
Concentrative Na(+)-nucleoside cotransporter 3 (SLC28A3) DT4YL5R S28A3_HUMAN Substrate [27]
Equilibrative nucleoside transporter 1 (SLC29A1) DTXD1TQ S29A1_HUMAN Substrate [26]
Equilibrative nucleoside transporter 2 (SLC29A2) DTW78DQ S29A2_HUMAN Substrate [26]
Equilibrative nucleobase transporter 1 (SLC43A3) DTGBPR5 S43A3_HUMAN Substrate [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 DTP(s)
Mercaptopurine Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [29]
Cytochrome P450 1A1 (CYP1A1) DE6OQ3W CP1A1_HUMAN Metabolism [29]
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [30]
------------------------------------------------------------------------------------
Mercaptopurine Interacts with 20 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Thiopurine S-methyltransferase (TPMT) OTFOX70W TPMT_HUMAN Affects Response To Substance [31]
Nuclear receptor subfamily 4 group A member 3 (NR4A3) OTPBE9R1 NR4A3_HUMAN Increases ADR [32]
Thiopurine S-methyltransferase (TPMT) OTFOX70W TPMT_HUMAN Decreases Metabolism [33]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [34]
Inosine-5'-monophosphate dehydrogenase 2 (IMPDH2) OTPG0K7E IMDH2_HUMAN Increases Expression [34]
Glutathione peroxidase 2 (GPX2) OTXI2NTI GPX2_HUMAN Increases Expression [34]
Glutathione peroxidase 3 (GPX3) OT6PK94R GPX3_HUMAN Increases Expression [34]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Increases Expression [34]
Glutathione synthetase (GSS) OTVSBEIW GSHB_HUMAN Increases Expression [34]
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) OTBPMIMW G3P_HUMAN Affects Localization [35]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Affects Activity [36]
Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1) OT4Y9NQI MP2K1_HUMAN Decreases Phosphorylation [18]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Affects Localization [18]
Bcl-2-like protein 1 (BCL2L1) OTRC5K9O B2CL1_HUMAN Decreases Expression [18]
Molybdenum cofactor sulfurase (MOCOS) OT0TL3Q5 MOCOS_HUMAN Decreases Oxidation [37]
HLA class II histocompatibility antigen, DQ alpha 1 chain (HLA-DQA1) OTC6GISG DQA1_HUMAN Affects Response To Substance [38]
Major vault protein (MVP) OTJGHJRB MVP_HUMAN Decreases Response To Substance [39]
HLA class II histocompatibility antigen, DRB1 beta chain (HLA-DRB1) OTRGGIFP DRB1_HUMAN Affects Response To Substance [38]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Affects Response To Substance [19]
Nucleotide triphosphate diphosphatase NUDT15 (NUDT15) OTX8SZOT NUD15_HUMAN Increases Response To Substance [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 DOT(s)

References

1 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5717).
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7226).
4 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
5 ClinicalTrials.gov (NCT00846703) The GD-2008 ALL Protocol for Childhood Acute Lymphoblastic Leukemia. U.S. National Institutes of Health.
6 Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus. Antiviral Res. 2015 Mar;115:9-16.
7 A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem. 2007;7(14):1408-22.
8 Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2010 Jan;65(2):335-46.
9 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
10 FDA label of Vandetanib. The 2020 official website of the U.S. Food and Drug Administration.
11 The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther. 2007 Apr;6(4):1300-9.
12 ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model. Int J Cancer. 2006 Jan 15;118(2):483-9. doi: 10.1002/ijc.21340.
13 Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib ("Iressa")-sensitive and resistant xenograft models. Cancer Sci. 2004 Dec;95(12):984-9. doi: 10.1111/j.1349-7006.2004.tb03187.x.
14 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
15 Autophagy inhibition induces enhanced proapoptotic effects of ZD6474 in glioblastoma. Br J Cancer. 2013 Jul 9;109(1):164-71. doi: 10.1038/bjc.2013.306. Epub 2013 Jun 25.
16 Downregulation of hERG channel expression by tyrosine kinase inhibitors nilotinib and vandetanib predominantly contributes to arrhythmogenesis. Toxicol Lett. 2022 Jul 15;365:11-23. doi: 10.1016/j.toxlet.2022.06.001. Epub 2022 Jun 6.
17 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
18 CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest. 2003 Apr;111(8):1133-45. doi: 10.1172/JCI16432.
19 Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood. 2005 Jun 15;105(12):4752-8. doi: 10.1182/blood-2004-11-4544. Epub 2005 Feb 15.
20 Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol. 2008 Aug;64(8):753-67.
21 6-mercaptopurine (6-MP) induces p53-mediated apoptosis of neural progenitor cells in the developing fetal rodent brain. Neurotoxicol Teratol. 2009 Jul-Aug;31(4):198-202.
22 ABC transporters and their role in nucleoside and nucleotide drug resistance. Biochem Pharmacol. 2012 Apr 15;83(8):1073-83.
23 Polymorphisms in multidrug resistance-associated protein gene 4 is associated with outcome in childhood acute lymphoblastic leukemia. Blood. 2009 Aug 13;114(7):1383-6.
24 Overexpression of MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the nucleoside analogs cytarabine and troxacitabine, but not gemcitabine. Springerplus. 2014 Dec 13;3:732.
25 Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem. 2004 Aug;90(4):931-41.
26 PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med. 2018 Jul;10(4):e1417. (ID: PA2040)
27 Involvement of the concentrative nucleoside transporter 3 and equilibrative nucleoside transporter 2 in the resistance of T-lymphoblastic cell lines to thiopurines. Biochem Biophys Res Commun. 2006 Apr 28;343(1):208-15.
28 Characterization of 6-Mercaptopurine Transport by the SLC43A3-Encoded Nucleobase Transporter. Mol Pharmacol. 2019 Jun;95(6):584-596.
29 Pharmacogenomics in drug-metabolizing enzymes catalyzing anticancer drugs for personalized cancer chemotherapy. Curr Drug Metab. 2007 Aug;8(6):554-62.
30 The degree of myelosuppression during maintenance therapy of adolescents with B-lineage intermediate risk acute lymphoblastic leukemia predicts risk of relapse. Leukemia. 2010 Apr;24(4):715-20.
31 Low-dose azathioprine is effective and safe for maintenance of remission in patients with ulcerative colitis. J Gastroenterol. 2003;38(8):740-6. doi: 10.1007/s00535-003-1139-2.
32 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
33 Genetic polymorphisms of drug-metabolising enzymes and drug transporters in the chemotherapeutic treatment of cancer. Clin Pharmacokinet. 2006;45(3):253-85. doi: 10.2165/00003088-200645030-00003.
34 Petit E, Langouet S, Akhdar H, Nicolas-Nicolaz C, Guillouzo A, Morel F. Differential toxic effects of azathioprine, 6-mercaptopurine and 6-thioguanine on human hepatocytes. Toxicol In Vitro. 2008;22(3):632-642. [PMID: 18222062]
35 Glyceraldehyde 3-phosphate dehydrogenase depletion induces cell cycle arrest and resistance to antimetabolites in human carcinoma cell lines. J Pharmacol Exp Ther. 2009 Oct;331(1):77-86. doi: 10.1124/jpet.109.155671. Epub 2009 Jul 23.
36 Identification of environmental chemicals that activate p53 signaling after in vitro metabolic activation. Arch Toxicol. 2022 Jul;96(7):1975-1987. doi: 10.1007/s00204-022-03291-5. Epub 2022 Apr 18.
37 Thiopurine-induced toxicity is associated with dysfunction variant of the human molybdenum cofactor sulfurase gene (xanthinuria type II). Toxicol Appl Pharmacol. 2018 Aug 15;353:102-108. doi: 10.1016/j.taap.2018.06.015. Epub 2018 Jun 20.
38 HLA-DQA1-HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat Genet. 2014 Oct;46(10):1131-4. doi: 10.1038/ng.3093. Epub 2014 Sep 14.
39 Sensitization of ABCG2-overexpressing cells to conventional chemotherapeutic agent by sunitinib was associated with inhibiting the function of ABCG2. Cancer Lett. 2009 Jun 28;279(1):74-83. doi: 10.1016/j.canlet.2009.01.027. Epub 2009 Feb 18.
40 A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet. 2014 Sep;46(9):1017-20. doi: 10.1038/ng.3060. Epub 2014 Aug 10.