General Information of Drug Off-Target (DOT) (ID: OT7T0TA4)

DOT Name Pro-adrenomedullin (ADM)
Gene Name ADM
UniProt ID
ADML_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2FLY; 2L7S; 4RWF; 5V6Y; 6UUN; 6UUS; 6V2E; 7VV0
Pfam ID
PF00214
Sequence
MKLVSVALMYLGSLAFLGADTARLDVASEFRKKWNKWALSRGKRELRMSSSYPTGLADVK
AGPAQTLIRPQDMKGASRSPEDSSPDAARIRVKRYRQSMNNFQGLRSFGCRFGTCTVQKL
AHQIYQFTDKDKDNVAPRSKISPQGYGRRRRRSLPEAGPGRTLVSSKPQAHGAPAPPSGS
APHFL
Function
AM and PAMP are potent hypotensive and vasodilatator agents. Numerous actions have been reported most related to the physiologic control of fluid and electrolyte homeostasis. In the kidney, am is diuretic and natriuretic, and both am and pamp inhibit aldosterone secretion by direct adrenal actions. In pituitary gland, both peptides at physiologically relevant doses inhibit basal ACTH secretion. Both peptides appear to act in brain and pituitary gland to facilitate the loss of plasma volume, actions which complement their hypotensive effects in blood vessels.
Tissue Specificity Highest levels found in pheochromocytoma and adrenal medulla. Also found in lung, ventricle and kidney tissues.
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Vascular smooth muscle contraction (hsa04270 )
Reactome Pathway
Calcitonin-like ligand receptors (R-HSA-419812 )
G alpha (s) signalling events (R-HSA-418555 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Fluorouracil DMUM7HZ Approved Pro-adrenomedullin (ADM) affects the response to substance of Fluorouracil. [44]
Cyclophosphamide DM4O2Z7 Approved Pro-adrenomedullin (ADM) affects the response to substance of Cyclophosphamide. [44]
Phenylephrine DMZHUO5 Approved Pro-adrenomedullin (ADM) decreases the response to substance of Phenylephrine. [45]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Nitrate DMVFB93 Investigative Pro-adrenomedullin (ADM) affects the abundance of Nitrate. [45]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Pro-adrenomedullin (ADM). [1]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Pro-adrenomedullin (ADM). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Pro-adrenomedullin (ADM). [29]
------------------------------------------------------------------------------------
42 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Pro-adrenomedullin (ADM). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Pro-adrenomedullin (ADM). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Pro-adrenomedullin (ADM). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Pro-adrenomedullin (ADM). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Pro-adrenomedullin (ADM). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Pro-adrenomedullin (ADM). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Pro-adrenomedullin (ADM). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Pro-adrenomedullin (ADM). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Pro-adrenomedullin (ADM). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Pro-adrenomedullin (ADM). [12]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Pro-adrenomedullin (ADM). [13]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Pro-adrenomedullin (ADM). [14]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Pro-adrenomedullin (ADM). [15]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Pro-adrenomedullin (ADM). [16]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Pro-adrenomedullin (ADM). [17]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Pro-adrenomedullin (ADM). [18]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Pro-adrenomedullin (ADM). [19]
Cannabidiol DM0659E Approved Cannabidiol increases the expression of Pro-adrenomedullin (ADM). [20]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Pro-adrenomedullin (ADM). [11]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Pro-adrenomedullin (ADM). [21]
Piroxicam DMTK234 Approved Piroxicam increases the expression of Pro-adrenomedullin (ADM). [22]
Malathion DMXZ84M Approved Malathion increases the expression of Pro-adrenomedullin (ADM). [23]
Dinoprostone DMTYOPD Approved Dinoprostone decreases the expression of Pro-adrenomedullin (ADM). [24]
Vandetanib DMRICNP Approved Vandetanib increases the expression of Pro-adrenomedullin (ADM). [25]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Pro-adrenomedullin (ADM). [26]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Pro-adrenomedullin (ADM). [28]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Pro-adrenomedullin (ADM). [30]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Pro-adrenomedullin (ADM). [31]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Pro-adrenomedullin (ADM). [32]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Pro-adrenomedullin (ADM). [33]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Pro-adrenomedullin (ADM). [34]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Pro-adrenomedullin (ADM). [35]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Pro-adrenomedullin (ADM). [36]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Pro-adrenomedullin (ADM). [37]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Pro-adrenomedullin (ADM). [38]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Pro-adrenomedullin (ADM). [39]
Phencyclidine DMQBEYX Investigative Phencyclidine increases the expression of Pro-adrenomedullin (ADM). [40]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of Pro-adrenomedullin (ADM). [10]
Manganese DMKT129 Investigative Manganese increases the expression of Pro-adrenomedullin (ADM). [41]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Pro-adrenomedullin (ADM). [42]
Cycloheximide DMGDA3C Investigative Cycloheximide increases the expression of Pro-adrenomedullin (ADM). [43]
Staurosporine DM0E9BR Investigative Staurosporine decreases the expression of Pro-adrenomedullin (ADM). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 Drug(s)
2 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the secretion of Pro-adrenomedullin (ADM). [27]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the secretion of Pro-adrenomedullin (ADM). [27]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicol In Vitro. 2021 Jun;73:105107. doi: 10.1016/j.tiv.2021.105107. Epub 2021 Feb 3.
8 Comparison of the global gene expression profiles produced by methylparaben, n-butylparaben and 17beta-oestradiol in MCF7 human breast cancer cells. J Appl Toxicol. 2007 Jan-Feb;27(1):67-77. doi: 10.1002/jat.1200.
9 Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011 Feb 18;24(2):165-7. doi: 10.1021/tx1004419. Epub 2011 Feb 4.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Synergistic antiproliferative effect of arsenic trioxide combined with bortezomib in HL60 cell line and primary blasts from patients affected by myeloproliferative disorders. Cancer Genet Cytogenet. 2010 Jun;199(2):110-20. doi: 10.1016/j.cancergencyto.2010.02.010.
12 Novel functional view of the crocidolite asbestos-treated A549 human lung epithelial transcriptome reveals an intricate network of pathways with opposing functions. BMC Genomics. 2008 Aug 7;9:376.
13 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
14 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
15 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
16 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
17 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
18 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
19 Dexamethasone and the inflammatory response in explants of human omental adipose tissue. Mol Cell Endocrinol. 2010 Feb 5;315(1-2):292-8.
20 Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells. J Cell Biochem. 2017 Jun;118(6):1531-1546. doi: 10.1002/jcb.25815. Epub 2016 Dec 29.
21 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
22 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
23 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
24 Expression of adrenomedullin in human ovaries, ovarian sex cord-stromal tumors and cultured granulosa-luteal cells. Gynecol Endocrinol. 2009 Feb;25(2):96-103. doi: 10.1080/09513590802488412.
25 ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model. Int J Cancer. 2006 Jan 15;118(2):483-9. doi: 10.1002/ijc.21340.
26 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
27 Adrenomedullin interacts with VEGF in endometrial cancer and has varied modulation in tumours of different grades. Gynecol Oncol. 2012 Apr;125(1):214-9. doi: 10.1016/j.ygyno.2011.12.429. Epub 2011 Dec 16.
28 Human relevance of an in vitro gene signature in HaCaT for skin sensitization. Toxicol In Vitro. 2015 Feb;29(1):81-4. doi: 10.1016/j.tiv.2014.08.010. Epub 2014 Sep 16.
29 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
30 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Role of calcium in lipopolysaccharide-induced calcitonin gene expression in human adipocytes. Innate Immun. 2011 Aug;17(4):403-13. doi: 10.1177/1753425910377100. Epub 2010 Aug 3.
33 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
34 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
35 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
36 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
37 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
38 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
39 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
40 Microarray Analysis of Gene Expression Alteration in Human Middle Ear Epithelial Cells Induced by Asian Sand Dust. Clin Exp Otorhinolaryngol. 2015 Dec;8(4):345-53. doi: 10.3342/ceo.2015.8.4.345. Epub 2015 Nov 10.
41 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.
42 Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde. Toxicol Appl Pharmacol. 2009 Sep 15;239(3):273-83.
43 Induction of adrenomedullin during hypoxia in cultured human glioblastoma cells. J Neurochem. 2000 Nov;75(5):1826-33. doi: 10.1046/j.1471-4159.2000.0751826.x.
44 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
45 Adrenomedullin contributes to vascular hyporeactivity in cirrhotic rats with ascites via a release of nitric oxide. Scand J Gastroenterol. 2004 Jul;39(7):686-93. doi: 10.1080/00365520410005306.