General Information of Drug Off-Target (DOT) (ID: OT1AT2OL)

DOT Name Syntenin-2 (SDCBP2)
Synonyms Similar to TACIP18; SITAC; Syndecan-binding protein 2
Gene Name SDCBP2
Related Disease
Alzheimer disease ( )
Congestive heart failure ( )
Neoplasm ( )
Epidermodysplasia verruciformis ( )
UniProt ID
SDCB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00595
Sequence
MSSLYPSLEDLKVDQAIQAQVRASPKMPALPVQATAISPPPVLYPNLAELENYMGLSLSS
QEVQESLLQIPEGDSTAVSGPGPGQMVAPVTGYSLGVRRAEIKPGVREIHLCKDERGKTG
LRLRKVDQGLFVQLVQANTPASLVGLRFGDQLLQIDGRDCAGWSSHKAHQVVKKASGDKI
VVVVRDRPFQRTVTMHKDSMGHVGFVIKKGKIVSLVKGSSAARNGLLTNHYVCEVDGQNV
IGLKDKKIMEILATAGNVVTLTIIPSVIYEHMVKKLPPVLLHHTMDHSIPDA
Function Binds phosphatidylinositol 4,5-bisphosphate (PIP2). May play a role in the organization of nuclear PIP2, cell division and cell survival.
Tissue Specificity
Preferentially expressed in cells of the digestive tract . Low expression in skeletal muscle and kidney . Detected in differentiated keratinocytes of normal and malignant epithelium . In healthy skin, expression is localized in suprabasal epidermal layers .

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Alzheimer disease DISF8S70 Strong Altered Expression [1]
Congestive heart failure DIS32MEA Strong Biomarker [2]
Neoplasm DISZKGEW Strong Altered Expression [3]
Epidermodysplasia verruciformis DIS54WBS moderate Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Syntenin-2 (SDCBP2). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Syntenin-2 (SDCBP2). [9]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Syntenin-2 (SDCBP2). [11]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin increases the expression of Syntenin-2 (SDCBP2). [5]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Syntenin-2 (SDCBP2). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Syntenin-2 (SDCBP2). [7]
Testosterone DM7HUNW Approved Testosterone increases the expression of Syntenin-2 (SDCBP2). [7]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Syntenin-2 (SDCBP2). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Syntenin-2 (SDCBP2). [10]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Syntenin-2 (SDCBP2). [12]
Manganese DMKT129 Investigative Manganese decreases the expression of Syntenin-2 (SDCBP2). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Ganglioside-Dependent Neural Stem Cell Proliferation in Alzheimer's Disease Model Mice.ASN Neuro. 2015 Dec 23;7(6):1759091415618916. doi: 10.1177/1759091415618916. Print 2015 Nov-Dec.
2 Soluble ST2 protein and hospitalizations due to worsening chronic heart failure during a one-year follow-up in a population with reduced ejection fraction.Adv Clin Exp Med. 2017 Sep;26(6):931-938. doi: 10.17219/acem/63005.
3 HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms.Front Microbiol. 2017 Sep 8;8:1724. doi: 10.3389/fmicb.2017.01724. eCollection 2017.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
6 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 In vitro effects of aldehydes present in tobacco smoke on gene expression in human lung alveolar epithelial cells. Toxicol In Vitro. 2013 Apr;27(3):1072-81.
13 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.