General Information of Drug Off-Target (DOT) (ID: OT1I8GDE)

DOT Name NAD kinase 2, mitochondrial (NADK2)
Synonyms EC 2.7.1.23; Mitochondrial NAD kinase; NAD kinase domain-containing protein 1, mitochondrial
Gene Name NADK2
Related Disease
Fatty liver disease ( )
Non-alcoholic fatty liver disease ( )
Progressive encephalopathy with leukodystrophy due to DECR deficiency ( )
UniProt ID
NAKD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7N29; 7R4J; 7R4K; 7R4L; 7R4M
EC Number
2.7.1.23
Pfam ID
PF01513
Sequence
MTCYRGFLLGSCCRVAGGRAAALRGPGAGGPAARPRLGGDGGGRRHLGQGQPRELAGCGS
RADGGFRPSRVVVVAKTTRYEFEQQRYRYAELSEEDLKQLLALKGSSYSGLLERHHIHTK
NVEHIIDSLRNEGIEVRLVKRREYDEETVRWADAVIAAGGDGTMLLAASKVLDRLKPVIG
VNTDPERSEGHLCLPVRYTHSFPEALQKFYRGEFRWLWRQRIRLYLEGTGINPVPVDLHE
QQLSLNQHNRALNIERAHDERSEASGPQLLPVRALNEVFIGESLSSRASYYEISVDDGPW
EKQKSSGLNLCTGTGSKAWSFNINRVATQAVEDVLNIAKRQGNLSLPLNRELVEKVTNEY
NESLLYSPEEPKILFSIREPIANRVFSSSRQRCFSSKVCVRSRCWDACMVVDGGTSFEFN
DGAIASMMINKEDELRTVLLEQ
Function
Mitochondrial NAD(+) kinase that phosphorylates NAD(+) to yield NADP(+). Can use both ATP or inorganic polyphosphate as the phosphoryl donor. Also has weak NADH kinase activity in vitro; however NADH kinase activity is much weaker than the NAD(+) kinase activity and may not be relevant in vivo.
Tissue Specificity Widely expressed.
KEGG Pathway
Nicoti.te and nicoti.mide metabolism (hsa00760 )
Metabolic pathways (hsa01100 )
Biosynthesis of cofactors (hsa01240 )
Reactome Pathway
Nicotinate metabolism (R-HSA-196807 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Fatty liver disease DIS485QZ Strong Genetic Variation [1]
Non-alcoholic fatty liver disease DISDG1NL Strong Biomarker [1]
Progressive encephalopathy with leukodystrophy due to DECR deficiency DISOCW9E Strong Autosomal recessive [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of NAD kinase 2, mitochondrial (NADK2). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of NAD kinase 2, mitochondrial (NADK2). [10]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of NAD kinase 2, mitochondrial (NADK2). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of NAD kinase 2, mitochondrial (NADK2). [16]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of NAD kinase 2, mitochondrial (NADK2). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of NAD kinase 2, mitochondrial (NADK2). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of NAD kinase 2, mitochondrial (NADK2). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of NAD kinase 2, mitochondrial (NADK2). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of NAD kinase 2, mitochondrial (NADK2). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of NAD kinase 2, mitochondrial (NADK2). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of NAD kinase 2, mitochondrial (NADK2). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of NAD kinase 2, mitochondrial (NADK2). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of NAD kinase 2, mitochondrial (NADK2). [11]
Bortezomib DMNO38U Approved Bortezomib increases the expression of NAD kinase 2, mitochondrial (NADK2). [13]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of NAD kinase 2, mitochondrial (NADK2). [14]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of NAD kinase 2, mitochondrial (NADK2). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of NAD kinase 2, mitochondrial (NADK2). [17]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of NAD kinase 2, mitochondrial (NADK2). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of NAD kinase 2, mitochondrial (NADK2). [19]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of NAD kinase 2, mitochondrial (NADK2). [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice.Gastroenterology. 2018 Jan;154(1):224-237. doi: 10.1053/j.gastro.2017.09.010. Epub 2017 Sep 18.
2 Mitochondrial NADP(H) deficiency due to a mutation in NADK2 causes dienoyl-CoA reductase deficiency with hyperlysinemia. Hum Mol Genet. 2014 Sep 15;23(18):5009-16. doi: 10.1093/hmg/ddu218. Epub 2014 May 8.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
13 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
14 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
15 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
19 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.