General Information of Drug Off-Target (DOT) (ID: OT2Y2TCW)

DOT Name Bromodomain-containing protein 4 (BRD4)
Synonyms Protein HUNK1
Gene Name BRD4
Related Disease
Syndromic intellectual disability ( )
Cornelia de Lange syndrome ( )
Multiple congenital anomalies/dysmorphic syndrome ( )
UniProt ID
BRD4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2I8N ; 2LSP ; 2MJV ; 2N3K ; 2NCZ ; 2ND0 ; 2ND1 ; 2NNU ; 2OSS ; 2OUO ; 2YEL ; 2YEM ; 3MXF ; 3P5O ; 3SVF ; 3SVG ; 3U5J ; 3U5K ; 3U5L ; 3UVW ; 3UVX ; 3UVY ; 3UW9 ; 3ZYU ; 4A9L ; 4BJX ; 4BW1 ; 4BW2 ; 4BW3 ; 4BW4 ; 4C66 ; 4C67 ; 4CFK ; 4CFL ; 4CL9 ; 4CLB ; 4DON ; 4E96 ; 4F3I ; 4GPJ ; 4HBV ; 4HBW ; 4HBX ; 4HBY ; 4HXK ; 4HXL ; 4HXM ; 4HXN ; 4HXO ; 4HXP ; 4HXR ; 4HXS ; 4IOO ; 4IOQ ; 4IOR ; 4J0R ; 4J0S ; 4J3I ; 4KV1 ; 4KV4 ; 4LR6 ; 4LRG ; 4LYI ; 4LYS ; 4LYW ; 4LZR ; 4LZS ; 4MEN ; 4MEO ; 4MEP ; 4MEQ ; 4MR3 ; 4MR4 ; 4NQM ; 4NR8 ; 4NUC ; 4NUD ; 4NUE ; 4O70 ; 4O71 ; 4O72 ; 4O74 ; 4O75 ; 4O76 ; 4O77 ; 4O78 ; 4O7A ; 4O7B ; 4O7C ; 4O7E ; 4O7F ; 4OGI ; 4OGJ ; 4PCE ; 4PCI ; 4PS5 ; 4QB3 ; 4QR3 ; 4QR4 ; 4QR5 ; 4QZS ; 4UIX ; 4UIY ; 4UIZ ; 4UYD ; 4WHW ; 4WIV ; 4X2I ; 4XY9 ; 4XYA ; 4YH3 ; 4YH4 ; 4Z1Q ; 4Z1S ; 4Z93 ; 4ZC9 ; 4ZW1 ; 5A5S ; 5A85 ; 5ACY ; 5AD2 ; 5AD3 ; 5BT4 ; 5CFW ; 5COI ; 5CP5 ; 5CPE ; 5CQT ; 5CRM ; 5CRZ ; 5CS8 ; 5CTL ; 5CY9 ; 5D0C ; 5D24 ; 5D25 ; 5D26 ; 5D3H ; 5D3J ; 5D3L ; 5D3N ; 5D3P ; 5D3R ; 5D3S ; 5D3T ; 5DLX ; 5DLZ ; 5DW2 ; 5DX4 ; 5E0R ; 5EGU ; 5EI4 ; 5EIS ; 5F5Z ; 5F60 ; 5F61 ; 5F62 ; 5F63 ; 5FBX ; 5H21 ; 5HCL ; 5HLS ; 5HM0 ; 5HQ5 ; 5HQ6 ; 5HQ7 ; 5I80 ; 5I88 ; 5IGK ; 5JWM ; 5KDH ; 5KHM ; 5KJ0 ; 5KU3 ; 5LJ1 ; 5LJ2 ; 5LRQ ; 5LUU ; 5M39 ; 5M3A ; 5MKZ ; 5MLI ; 5N2M ; 5NNC ; 5NND ; 5NNE ; 5NNF ; 5NNG ; 5O97 ; 5OVB ; 5OWM ; 5OWW ; 5S9P ; 5S9Q ; 5S9R ; 5T35 ; 5TI2 ; 5TI3 ; 5TI4 ; 5TI5 ; 5TI6 ; 5TI7 ; 5U28 ; 5U2C ; 5U2E ; 5U2F ; 5UEO ; 5UEP ; 5UEQ ; 5UER ; 5UES ; 5UET ; 5UEU ; 5UEV ; 5UEX ; 5UEY ; 5UEZ ; 5UF0 ; 5ULA ; 5UOO ; 5UVS ; 5UVT ; 5UVU ; 5UVV ; 5UVW ; 5UVX ; 5UVY ; 5UVZ ; 5V67 ; 5VBO ; 5VBP ; 5VOM ; 5VZS ; 5W55 ; 5WA5 ; 5WMA ; 5WMD ; 5WMG ; 5WUU ; 5XHY ; 5XI2 ; 5XI3 ; 5XI4 ; 5Y1Y ; 5Y8C ; 5Y8W ; 5Y8Y ; 5Y8Z ; 5Y93 ; 5Y94 ; 5YOU ; 5YOV ; 5YQX ; 5Z1R ; 5Z1S ; 5Z1T ; 5Z5T ; 5Z5U ; 5Z5V ; 5Z8G ; 5Z8R ; 5Z8Z ; 5Z90 ; 5Z9C ; 5Z9K ; 6AFR ; 6AJV ; 6AJW ; 6AJX ; 6AJY ; 6AJZ ; 6BN7 ; 6BN8 ; 6BN9 ; 6BNB ; 6BNH ; 6BOY ; 6C7Q ; 6C7R ; 6CD4 ; 6CD5 ; 6CIS ; 6CIY ; 6CJ1 ; 6CJ2 ; 6CKR ; 6CKS ; 6CZU ; 6CZV ; 6DJC ; 6DL2 ; 6DMJ ; 6DML ; 6DNE ; 6DUV ; 6E4A ; 6FFD ; 6FNX ; 6FO5 ; 6FSY ; 6FT3 ; 6FT4 ; 6G0D ; 6G0E ; 6G0F ; 6G0G ; 6G0H ; 6G0O ; 6G0P ; 6G0Q ; 6G0R ; 6G0S ; 6HDQ ; 6HOV ; 6I7X ; 6I7Y ; 6IN1 ; 6JI3 ; 6JI4 ; 6JI5 ; 6JJ3 ; 6JJ5 ; 6JJ6 ; 6JJB ; 6KEC ; 6KED ; 6KEE ; 6KEF ; 6KEG ; 6KEH ; 6KEI ; 6KEJ ; 6KEK ; 6KO2 ; 6LG4 ; 6LG5 ; 6LG6 ; 6LG7 ; 6LG8 ; 6LG9 ; 6LIH ; 6LIM ; 6MAU ; 6MH1 ; 6MH7 ; 6MNL ; 6P05 ; 6PRT ; 6PS9 ; 6PSB ; 6Q3Y ; 6Q3Z ; 6RWJ ; 6S25 ; 6S4B ; 6S6K ; 6SA2 ; 6SA3 ; 6SAH ; 6SAJ ; 6SB8 ; 6SE4 ; 6SIS ; 6SWN ; 6SWQ ; 6TPX ; 6TPY ; 6TPZ ; 6U0D ; 6U6K ; 6U6L ; 6U72 ; 6U74 ; 6U8G ; 6U8I ; 6U8M ; 6ULS ; 6ULV ; 6UVJ ; 6UVM ; 6UWU ; 6UWX ; 6V0U ; 6V1K ; 6V1L ; 6V1U ; 6VIW ; 6VIX ; 6VIZ ; 6VUB ; 6VUC ; 6VUF ; 6VUJ ; 6WGX ; 6WVX ; 6WW8 ; 6X7B ; 6X7C ; 6X7D ; 6XUZ ; 6XV3 ; 6XV7 ; 6XVC ; 6YIN ; 6YQN ; 6YQO ; 6YQP ; 6YQZ ; 6Z7G ; 6Z7L ; 6Z7M ; 6ZB3 ; 6ZCI ; 6ZED ; 6ZEL ; 6ZF9 ; 7A9U ; 7AJN ; 7AQT ; 7AXR ; 7B1T ; 7C2Z ; 7C6P ; 7DHS ; 7EHW ; 7EHY ; 7EIG ; 7EIK ; 7EIL ; 7FH2 ; 7JKW ; 7JKX ; 7JKY ; 7JKZ ; 7K6G ; 7K6H ; 7KHH ; 7KHL ; 7KO0 ; 7L9M ; 7LA9 ; 7LH8 ; 7M16 ; 7MCE ; 7MCF ; 7MLQ ; 7MLR ; 7MLS ; 7MR5 ; 7MR6 ; 7MR7 ; 7MR8 ; 7MR9 ; 7MRA ; 7MRB ; 7O18 ; 7OEO ; 7P6V ; 7P6W ; 7P6Y ; 7Q3F ; 7QDL ; 7R5B ; 7R9C ; 7REK ; 7REL ; 7REM ; 7RJO ; 7RJP ; 7RJQ ; 7RJR ; 7RMD ; 7RN2 ; 7RUH ; 7RUI ; 7RXR ; 7RXS ; 7RXT ; 7T3F ; 7TUQ ; 7TV0 ; 7UGF ; 7USJ ; 7USK ; 7UTY ; 7UZN ; 7V1U ; 7V2J ; 7W3D ; 7WJS ; 7WKY ; 7WL4 ; 7WWZ ; 7X6T ; 7YL2 ; 7YMG ; 7YQ9 ; 7ZAQ ; 7ZE6 ; 7ZE7 ; 7ZEF ; 7ZFN ; 7ZFS ; 7ZFT ; 7ZFU ; 7ZFV ; 7ZFY ; 7ZFZ ; 7ZG1 ; 7ZG2 ; 7ZNT ; 8B5B ; 8B5C ; 8BDS ; 8BDT ; 8BDX ; 8BEB ; 8CKF ; 8DYR ; 8E17 ; 8E3W ; 8EAD ; 8EWV ; 8G46 ; 8GPZ ; 8GQ0 ; 8IBQ ; 8IDH ; 8OV6 ; 8P9F ; 8P9G ; 8P9H ; 8P9I ; 8P9J ; 8P9K ; 8P9L ; 8PIQ ; 8PXA ; 8PXM ; 8PXN
Pfam ID
PF17035 ; PF17105 ; PF00439
Sequence
MSAESGPGTRLRNLPVMGDGLETSQMSTTQAQAQPQPANAASTNPPPPETSNPNKPKRQT
NQLQYLLRVVLKTLWKHQFAWPFQQPVDAVKLNLPDYYKIIKTPMDMGTIKKRLENNYYW
NAQECIQDFNTMFTNCYIYNKPGDDIVLMAEALEKLFLQKINELPTEETEIMIVQAKGRG
RGRKETGTAKPGVSTVPNTTQASTPPQTQTPQPNPPPVQATPHPFPAVTPDLIVQTPVMT
VVPPQPLQTPPPVPPQPQPPPAPAPQPVQSHPPIIAATPQPVKTKKGVKRKADTTTPTTI
DPIHEPPSLPPEPKTTKLGQRRESSRPVKPPKKDVPDSQQHPAPEKSSKVSEQLKCCSGI
LKEMFAKKHAAYAWPFYKPVDVEALGLHDYCDIIKHPMDMSTIKSKLEAREYRDAQEFGA
DVRLMFSNCYKYNPPDHEVVAMARKLQDVFEMRFAKMPDEPEEPVVAVSSPAVPPPTKVV
APPSSSDSSSDSSSDSDSSTDDSEEERAQRLAELQEQLKAVHEQLAALSQPQQNKPKKKE
KDKKEKKKEKHKRKEEVEENKKSKAKEPPPKKTKKNNSSNSNVSKKEPAPMKSKPPPTYE
SEEEDKCKPMSYEEKRQLSLDINKLPGEKLGRVVHIIQSREPSLKNSNPDEIEIDFETLK
PSTLRELERYVTSCLRKKRKPQAEKVDVIAGSSKMKGFSSSESESSSESSSSDSEDSETE
MAPKSKKKGHPGREQKKHHHHHHQQMQQAPAPVPQQPPPPPQQPPPPPPPQQQQQPPPPP
PPPSMPQQAAPAMKSSPPPFIATQVPVLEPQLPGSVFDPIGHFTQPILHLPQPELPPHLP
QPPEHSTPPHLNQHAVVSPPALHNALPQQPSRPSNRAAALPPKPARPPAVSPALTQTPLL
PQPPMAQPPQVLLEDEEPPAPPLTSMQMQLYLQQLQKVQPPTPLLPSVKVQSQPPPPLPP
PPHPSVQQQLQQQPPPPPPPQPQPPPQQQHQPPPRPVHLQPMQFSTHIQQPPPPQGQQPP
HPPPGQQPPPPQPAKPQQVIQHHHSPRHHKSDPYSTGHLREAPSPLMIHSPQMSQFQSLT
HQSPPQQNVQPKKQELRAASVVQPQPLVVVKEEKIHSPIIRSEPFSPSLRPEPPKHPESI
KAPVHLPQRPEMKPVDVGRPVIRPPEQNAPPPGAPDKDKQKQEPKTPVAPKKDLKIKNMG
SWASLVQKHPTTPSSTAKSSSDSFEQFRRAAREKEEREKALKAQAEHAEKEKERLRQERM
RSREDEDALEQARRAHEEARRRQEQQQQQRQEQQQQQQQQAAAVAAAATPQAQSSQPQSM
LDQQRELARKREQERRRREAMAATIDMNFQSDLLSIFEENLF
Function
Chromatin reader protein that recognizes and binds acetylated histones and plays a key role in transmission of epigenetic memory across cell divisions and transcription regulation. Remains associated with acetylated chromatin throughout the entire cell cycle and provides epigenetic memory for postmitotic G1 gene transcription by preserving acetylated chromatin status and maintaining high-order chromatin structure. During interphase, plays a key role in regulating the transcription of signal-inducible genes by associating with the P-TEFb complex and recruiting it to promoters. Also recruits P-TEFb complex to distal enhancers, so called anti-pause enhancers in collaboration with JMJD6. BRD4 and JMJD6 are required to form the transcriptionally active P-TEFb complex by displacing negative regulators such as HEXIM1 and 7SKsnRNA complex from P-TEFb, thereby transforming it into an active form that can then phosphorylate the C-terminal domain (CTD) of RNA polymerase II. Regulates differentiation of naive CD4(+) T-cells into T-helper Th17 by promoting recruitment of P-TEFb to promoters. Promotes phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II. According to a report, directly acts as an atypical protein kinase and mediates phosphorylation of 'Ser-2' of the C-terminal domain (CTD) of RNA polymerase II; these data however need additional evidences in vivo. In addition to acetylated histones, also recognizes and binds acetylated RELA, leading to further recruitment of the P-TEFb complex and subsequent activation of NF-kappa-B. Also acts as a regulator of p53/TP53-mediated transcription: following phosphorylation by CK2, recruited to p53/TP53 specific target promoters ; [Isoform B]: Acts as a chromatin insulator in the DNA damage response pathway. Inhibits DNA damage response signaling by recruiting the condensin-2 complex to acetylated histones, leading to chromatin structure remodeling, insulating the region from DNA damage response by limiting spreading of histone H2AX/H2A.x phosphorylation.
Tissue Specificity Ubiquitously expressed.
Reactome Pathway
Potential therapeutics for SARS (R-HSA-9679191 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Syndromic intellectual disability DISH7SDF Definitive Autosomal dominant [1]
Cornelia de Lange syndrome DISEQSXO Supportive Autosomal dominant [2]
Multiple congenital anomalies/dysmorphic syndrome DIS0LF2K Limited Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Olaparib DM8QB1D Approved Bromodomain-containing protein 4 (BRD4) affects the response to substance of Olaparib. [23]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Bromodomain-containing protein 4 (BRD4). [4]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Bromodomain-containing protein 4 (BRD4). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Bromodomain-containing protein 4 (BRD4). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Bromodomain-containing protein 4 (BRD4). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Bromodomain-containing protein 4 (BRD4). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Bromodomain-containing protein 4 (BRD4). [9]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Bromodomain-containing protein 4 (BRD4). [10]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Bromodomain-containing protein 4 (BRD4). [11]
Aspirin DM672AH Approved Aspirin increases the expression of Bromodomain-containing protein 4 (BRD4). [12]
Sulindac DM2QHZU Approved Sulindac decreases the expression of Bromodomain-containing protein 4 (BRD4). [12]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Bromodomain-containing protein 4 (BRD4). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Bromodomain-containing protein 4 (BRD4). [16]
Mivebresib DMCPF90 Phase 1 Mivebresib increases the expression of Bromodomain-containing protein 4 (BRD4). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Bromodomain-containing protein 4 (BRD4). [19]
UNC0379 DMD1E4J Preclinical UNC0379 decreases the expression of Bromodomain-containing protein 4 (BRD4). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone affects the localization of Bromodomain-containing protein 4 (BRD4). [14]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Bromodomain-containing protein 4 (BRD4). [15]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Bromodomain-containing protein 4 (BRD4). [17]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Bromodomain-containing protein 4 (BRD4). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Bromodomain-containing protein 4 (BRD4). [22]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Bromodomain-containing protein 4 (BRD4). [20]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 BRD4 interacts with NIPBL and BRD4 is mutated in a Cornelia de Lange-like syndrome. Nat Genet. 2018 Mar;50(3):329-332. doi: 10.1038/s41588-018-0042-y. Epub 2018 Jan 29.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
12 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
13 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
14 Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014 Jun 12;510(7504):278-82. doi: 10.1038/nature13229. Epub 2014 Apr 23.
15 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
16 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
17 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
18 Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells. Blood Cancer J. 2019 Jan 15;9(2):4. doi: 10.1038/s41408-018-0165-5.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell. 2017 Jan 9;31(1):50-63.
22 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
23 The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol Oncol. 2018 Jun;149(3):575-584. doi: 10.1016/j.ygyno.2018.03.049. Epub 2018 Mar 20.