General Information of Drug Off-Target (DOT) (ID: OT43V4UN)

DOT Name 3-oxoacyl- reductase (CBR4)
Synonyms
EC 1.1.1.100; 3-ketoacyl- reductase beta subunit; KAR beta subunit; Carbonyl reductase family member 4; CBR4; Quinone reductase CBR4; EC 1.6.5.10; Short chain dehydrogenase/reductase family 45C member 1
Gene Name CBR4
Related Disease
Tuberculosis ( )
UniProt ID
CBR4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4CQL; 4CQM
EC Number
1.1.1.100; 1.6.5.10
Pfam ID
PF13561
Sequence
MDKVCAVFGGSRGIGRAVAQLMARKGYRLAVIARNLEGAKAAAGDLGGDHLAFSCDVAKE
HDVQNTFEELEKHLGRVNFLVNAAGINRDGLLVRTKTEDMVSQLHTNLLGSMLTCKAAMR
TMIQQQGGSIVNVGSIVGLKGNSGQSVYSASKGGLVGFSRALAKEVARKKIRVNVVAPGF
VHTDMTKDLKEEHLKKNIPLGRFGETIEVAHAVVFLLESPYITGHVLVVDGGLQLIL
Function
Component of the heterotetramer complex KAR (3-ketoacyl-[acyl carrier protein] reductase or 3-ketoacyl-[ACP] reductase) that forms part of the mitochondrial fatty acid synthase (mtFAS). Beta-subunit of the KAR heterotetramer complex, responsible for the 3-ketoacyl-ACP reductase activity of the mtFAS, reduces 3-oxoacyl-[ACP] to (3R)-hydroxyacyl-[ACP] in a NADPH-dependent manner with no chain length preference, thereby participating in mitochondrial fatty acid biosynthesis. The homotetramer has NADPH-dependent quinone reductase activity (in vitro), hence could play a role in protection against cytotoxicity of exogenous quinones. As a heterotetramer, it can also reduce 9,10-phenanthrenequinone, 1,4-benzoquinone and various other o-quinones and p-quinones (in vitro).
Tissue Specificity Detected in liver and kidney (at protein level) . Displays the highest expression in neuronal and muscle tissues .
KEGG Pathway
Fatty acid biosynthesis (hsa00061 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
Reactome Pathway
Fatty acyl-CoA biosynthesis (R-HSA-75105 )
BioCyc Pathway
MetaCyc:ENSG00000145439-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Tuberculosis DIS2YIMD Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of 3-oxoacyl- reductase (CBR4). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 3-oxoacyl- reductase (CBR4). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 3-oxoacyl- reductase (CBR4). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of 3-oxoacyl- reductase (CBR4). [5]
Cisplatin DMRHGI9 Approved Cisplatin affects the expression of 3-oxoacyl- reductase (CBR4). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 3-oxoacyl- reductase (CBR4). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of 3-oxoacyl- reductase (CBR4). [9]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of 3-oxoacyl- reductase (CBR4). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of 3-oxoacyl- reductase (CBR4). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of 3-oxoacyl- reductase (CBR4). [12]
Decitabine DMQL8XJ Approved Decitabine affects the expression of 3-oxoacyl- reductase (CBR4). [6]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of 3-oxoacyl- reductase (CBR4). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 3-oxoacyl- reductase (CBR4). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of 3-oxoacyl- reductase (CBR4). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of 3-oxoacyl- reductase (CBR4). [8]
------------------------------------------------------------------------------------

References

1 Secretome profile analysis of multidrug-resistant, monodrug-resistant and drug-susceptible Mycobacterium tuberculosis.Arch Microbiol. 2018 Mar;200(2):299-309. doi: 10.1007/s00203-017-1448-0. Epub 2017 Nov 8.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9. Oncotarget. 2016 Dec 13;7(50):83359-83377.
12 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
13 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
14 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.