General Information of Drug Off-Target (DOT) (ID: OT4JQ9YG)

DOT Name RNA-binding protein 33 (RBM33)
Synonyms Proline-rich protein 8; RNA-binding motif protein 33
Gene Name RBM33
Related Disease
Cerebral palsy ( )
Isolated cleft palate ( )
UniProt ID
RBM33_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MAAALGASGGAGAGDDDFDQFDKPGAERSWRRRAADEDWDSELEDDLLGEDLLSGKKNQS
DLSDEELNDDLLQSDNEDEENFSSQGVTISLNATSGMVTSFELSDNTNDQSGEQESEYEQ
EQGEDELVYHKSDGSELYTQEYPEEGQYEGHEAELTEDQIEYVEEPEEEQLYTDEVLDIE
INEPLDEFTGGMETLELQKDIKEESDEEEEDDEESGRLRFKTERKEGTIIRLSDVTRERR
NIPETLELSAEAKAALLEFEERERQHKQGRYSSRRGGRRGGPLMCRGVGDQRRESTERGR
MKDHRPALLPTQPPVVPQAPPPPPPPPQQQPIRSLFQPQPLQPLLPVQHPHHPSPPQGMH
MPPQLETPRMMMTPPPVTPQQPKNIHINPHFKGTVVTPVQVPLLPVPSQPRPAVGPQRFP
GPPEFPQHTPGPVPNSFSQPPRLPLQDQWRAPPPPQDRDPFFLGVSGEPRFPSHLFLEQR
SPPPPPPPPTLLNSSHPVPTQSPLPFTQPGPAFNQQGQQPVFPRERPVRPALQPPGPVGI
LHFSQPGSATTRPFIPPRQPFLPGPGQPFLPTHTQPNLQGPLHPPLPPPHQPQPQQPQQQ
PPPQHQPPHQPPHQPPPQHQPPPQHPPQHPPQHQHHHHHHHLSVPPPPLMPMSQPQFRPH
VQTAQPQASSSRMQCPQRQGLRHNTTSQNVSKRPMQQMQPTAPRNSNLRELPIAPSHVIE
MSSSRCSATPSAQVKPIVSASPPSRAVAGSRSSQGKTEVKVKPASPVAQPKEEAKTETEF
PDEDEETRLYRLKIEEQKRLREEILKQKELRRQQQAGARKKELLERLAQQQQQLYAPPPP
AEQEEQALSPSPTNGNPLLPFPGAQVRQNVKNRLLVKNQDVSISNVQPKTSNFVPSSANM
QYQGQQMKALKHLRQTRTVPQSQTQPLHKVLPIKPADVEEPAVPQTPRVASIQGRPQDTK
PGVKRTVTHRTNSGGGDGPHISSKVRVIKLSGGGGESDGFFHPEGQPQRLPQPPEVGPQP
ARKVTLTRGGLQQPPHLPAGPHAHSPVPPGIKSIQGIHPAKKAIMHGRGRGVAGPMGRGR
LMPNKQNLRVVECKPQPCVVSVEGLSSSTTDAQLKSLLMSVGPIQSLQMLPQQRKAIAKF
KEPAHALAFQQKFHRHMIDLSHINVALIVE

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cerebral palsy DIS82ODL Strong Biomarker [1]
Isolated cleft palate DISV80CD Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of RNA-binding protein 33 (RBM33). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of RNA-binding protein 33 (RBM33). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of RNA-binding protein 33 (RBM33). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of RNA-binding protein 33 (RBM33). [5]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of RNA-binding protein 33 (RBM33). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of RNA-binding protein 33 (RBM33). [8]
Marinol DM70IK5 Approved Marinol increases the expression of RNA-binding protein 33 (RBM33). [9]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of RNA-binding protein 33 (RBM33). [10]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of RNA-binding protein 33 (RBM33). [11]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of RNA-binding protein 33 (RBM33). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of RNA-binding protein 33 (RBM33). [13]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of RNA-binding protein 33 (RBM33). [14]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of RNA-binding protein 33 (RBM33). [16]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of RNA-binding protein 33 (RBM33). [18]
crotylaldehyde DMTWRQI Investigative crotylaldehyde increases the expression of RNA-binding protein 33 (RBM33). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of RNA-binding protein 33 (RBM33). [6]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of RNA-binding protein 33 (RBM33). [15]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the methylation of RNA-binding protein 33 (RBM33). [17]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of RNA-binding protein 33 (RBM33). [15]
------------------------------------------------------------------------------------

References

1 Immune responses to recombinant Brugia malayi pepsin inhibitor homolog (Bm-33) in patients with human lymphatic filariaisis.Parasitol Res. 2011 Feb;108(2):407-15. doi: 10.1007/s00436-010-2081-x. Epub 2010 Oct 7.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
9 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
10 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
11 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
12 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
13 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
14 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
17 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
18 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
19 Gene expression profile and cytotoxicity of human bronchial epithelial cells exposed to crotonaldehyde. Toxicol Lett. 2010 Aug 16;197(2):113-22.