General Information of Drug Off-Target (DOT) (ID: OT7L16DY)

DOT Name Acyl-CoA-binding domain-containing protein 5 (ACBD5)
Gene Name ACBD5
Related Disease
Retinal dystrophy with leukodystrophy ( )
Inherited retinal dystrophy ( )
Peroxisomal disorder ( )
Acyl-CoA binding domain containing protein 5 deficiency ( )
Neoplasm ( )
Thyroid gland papillary carcinoma ( )
UniProt ID
ACBD5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3FLV
Pfam ID
PF00887
Sequence
MFQFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAAVKVIQSLPKNGS
FQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYKWDAWSSLGDMTKEEAMIAYVEE
MKKIIETMPMTEKVEELLRVIGPFYEIVEDKKSGRSSDITSVRLEKISKCLEDLGNVLTS
TPNAKTVNGKAESSDSGAESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYD
KDGFVQDIQNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGIQH
LTSDSDSEVYCDSMEQFGQEESLDSFTSNNGPFQYYLGGHSSQPMENSGFREDIQVPPGN
GNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGGETDEFSNVRRGRGHRMQHLSEG
TKGRQVGSGGDGERWGSDRGSRGSLNEQIALVLMRLQEDMQNVLQRLQKLETLTALQAKS
STSTLQTAPQPTSQRPSWWPFEMSPGVLTFAIIWPFIAQWLVYLYYQRRRRKLN
Function Acyl-CoA binding protein which acts as the peroxisome receptor for pexophagy but is dispensable for aggrephagy and nonselective autophagy. Binds medium- and long-chain acyl-CoA esters.
Reactome Pathway
RHOA GTPase cycle (R-HSA-8980692 )
RHOC GTPase cycle (R-HSA-9013106 )
Class I peroxisomal membrane protein import (R-HSA-9603798 )
Peroxisomal lipid metabolism (R-HSA-390918 )

Molecular Interaction Atlas (MIA) of This DOT

6 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Retinal dystrophy with leukodystrophy DISXRT54 Definitive Autosomal recessive [1]
Inherited retinal dystrophy DISGGL77 Strong Genetic Variation [1]
Peroxisomal disorder DISV185U Strong Biomarker [2]
Acyl-CoA binding domain containing protein 5 deficiency DIS7CMWR Moderate Autosomal recessive [3]
Neoplasm DISZKGEW Limited Biomarker [4]
Thyroid gland papillary carcinoma DIS48YMM Limited Biomarker [4]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [15]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [7]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [8]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [10]
Malathion DMXZ84M Approved Malathion increases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [11]
Permethrin DMZ0Q1G Approved Permethrin increases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [11]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [16]
Paraoxon DMN4ZKC Investigative Paraoxon increases the expression of Acyl-CoA-binding domain-containing protein 5 (ACBD5). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism. J Med Genet. 2017 May;54(5):330-337. doi: 10.1136/jmedgenet-2016-104132. Epub 2016 Oct 31.
2 Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal -Oxidation of Very-long-chain Fatty Acids.J Biol Chem. 2017 Jan 13;292(2):691-705. doi: 10.1074/jbc.M116.760090. Epub 2016 Nov 29.
3 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
4 A novel RET rearrangement (ACBD5/RET) by pericentric inversion, inv(10)(p12.1;q11.2), in papillary thyroid cancer from an atomic bomb survivor exposed to high-dose radiation.Oncol Rep. 2014 Nov;32(5):1809-14. doi: 10.3892/or.2014.3449. Epub 2014 Aug 29.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
8 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
9 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
17 Genomic and phenotypic alterations of the neuronal-like cells derived from human embryonal carcinoma stem cells (NT2) caused by exposure to organophosphorus compounds paraoxon and mipafox. Int J Mol Sci. 2014 Jan 9;15(1):905-26. doi: 10.3390/ijms15010905.