General Information of Drug Off-Target (DOT) (ID: OT80PQWX)

DOT Name Tetratricopeptide repeat protein 39A (TTC39A)
Synonyms TPR repeat protein 39A; Differentially expressed in MCF-7 with estradiol protein 6; DEME-6
Gene Name TTC39A
Related Disease
Breast carcinoma ( )
Liver cancer ( )
UniProt ID
TT39A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF10300
Sequence
MGQKGHKDSLYPCGGTPESSLHEALDQCMTALDLFLTNQFSEALSYLKPRTKESMYHSLT
YATILEMQAMMTFDPQDILLAGNMMKEAQMLCQRHRRKSSVTDSFSSLVNRPTLGQFTEE
EIHAEVCYAECLLQRAALTFLQGSSHGGAVRPRALHDPSHACSCPPGPGRQHLFLLQDEN
MVSFIKGGIKVRNSYQTYKELDSLVQSSQYCKGENHPHFEGGVKLGVGAFNLTLSMLPTR
ILRLLEFVGFSGNKDYGLLQLEEGASGHSFRSVLCVMLLLCYHTFLTFVLGTGNVNIEEA
EKLLKPYLNRYPKGAIFLFFAGRIEVIKGNIDAAIRRFEECCEAQQHWKQFHHMCYWELM
WCFTYKGQWKMSYFYADLLSKENCWSKATYIYMKAAYLSMFGKEDHKPFGDDEVELFRAV
PGLKLKIAGKSLPTEKFAIRKSRRYFSSNPISLPVPALEMMYIWNGYAVIGKQPKLTDGI
LEIITKAEEMLEKGPENEYSVDDECLVKLLKGLCLKYLGRVQEAEENFRSISANEKKIKY
DHYLIPNALLELALLLMEQDRNEEAIKLLESAKQNYKNYSMESRTHFRIQAATLQAKSSL
ENSSRSMVSSVSL

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast carcinoma DIS2UE88 Strong Altered Expression [1]
Liver cancer DISDE4BI Strong Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Tetratricopeptide repeat protein 39A (TTC39A). [3]
------------------------------------------------------------------------------------
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [5]
Doxorubicin DMVP5YE Approved Doxorubicin affects the expression of Tetratricopeptide repeat protein 39A (TTC39A). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [8]
Testosterone DM7HUNW Approved Testosterone increases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [8]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [9]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Tetratricopeptide repeat protein 39A (TTC39A). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)

References

1 Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line.Nucleic Acids Res. 1998 Feb 15;26(4):1116-23. doi: 10.1093/nar/26.4.1116.
2 A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays.Toxicol Sci. 2007 Mar;96(1):40-6. doi: 10.1093/toxsci/kfl171. Epub 2006 Nov 17.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
8 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
9 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
10 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
13 BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin Cancer Res. 2014 Feb 15;20(4):912-25.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.