General Information of Drug Off-Target (DOT) (ID: OT8863O1)

DOT Name Cyclin-I (CCNI)
Gene Name CCNI
Related Disease
Malaria ( )
Cervical cancer ( )
Cervical carcinoma ( )
Epithelial ovarian cancer ( )
Neoplasm ( )
UniProt ID
CCNI_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00134
Sequence
MKFPGPLENQRLSFLLEKAITREAQMWKVNVRKMPSNQNVSPSQRDEVIQWLAKLKYQFN
LYPETFALASSLLDRFLATVKAHPKYLSCIAISCFFLAAKTVEEDERIPVLKVLARDSFC
GCSSSEILRMERIILDKLNWDLHTATPLDFLHIFHAIAVSTRPQLLFSLPKLSPSQHLAV
LTKQLLHCMACNQLLQFRGSMLALAMVSLEMEKLIPDWLSLTIELLQKAQMDSSQLIHCR
ELVAHHLSTLQSSLPLNSVYVYRPLKHTLVTCDKGVFRLHPSSVPGPDFSKDNSKPEVPV
RGTAAFYHHLPAASGCKQTSTKRKVEEMEVDDFYDGIKRLYNEDNVSENVGSVCGTDLSR
QEGHASPCPPLQPVSVM
Tissue Specificity
Highest levels in adult heart, brain and skeletal muscle. Lower levels in adult placenta, lung, kidney and pancreas. Also high levels in fetal brain and lower levels in fetal lung, liver and kidney. Also abundant in testis and thyroid.

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Malaria DISQ9Y50 Definitive Biomarker [1]
Cervical cancer DISFSHPF Strong Altered Expression [2]
Cervical carcinoma DIST4S00 Strong Altered Expression [2]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [3]
Neoplasm DISZKGEW Strong Altered Expression [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Cyclin-I (CCNI). [4]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Cyclin-I (CCNI). [5]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Cyclin-I (CCNI). [6]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Cyclin-I (CCNI). [7]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Cyclin-I (CCNI). [8]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Cyclin-I (CCNI). [9]
Menadione DMSJDTY Approved Menadione affects the expression of Cyclin-I (CCNI). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Cyclin-I (CCNI). [11]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Cyclin-I (CCNI). [12]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Cyclin-I (CCNI). [13]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Cyclin-I (CCNI). [14]
Phencyclidine DMQBEYX Investigative Phencyclidine decreases the expression of Cyclin-I (CCNI). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.mBio. 2017 Jun 13;8(3):e00605-17. doi: 10.1128/mBio.00605-17.
2 Cyclin I promotes cisplatin resistance via Cdk5 activation in cervical cancer.Eur Rev Med Pharmacol Sci. 2015 Dec;19(23):4533-41.
3 Cyclin I mRNA expression correlates with kinase insert domain receptor expression in human epithelial ovarian cancer.Anticancer Res. 2015 Feb;35(2):1115-9.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
6 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
7 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
8 Gene alterations of ovarian cancer cells expressing estrogen receptors by estrogen and bisphenol a using microarray analysis. Lab Anim Res. 2011 Jun;27(2):99-107. doi: 10.5625/lar.2011.27.2.99. Epub 2011 Jun 22.
9 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
12 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
13 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
14 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
15 Differential response of Mono Mac 6, BEAS-2B, and Jurkat cells to indoor dust. Environ Health Perspect. 2007 Sep;115(9):1325-32.