General Information of Drug Off-Target (DOT) (ID: OTAFXQRA)

DOT Name Transthyretin
Synonyms ATTR; Prealbumin; TBPA
Gene Name TTR
Related Disease
Obsolete hereditary ATTR amyloidosis ( )
Transthyretin amyloidosis ( )
Heart arrhythmia ( )
ATTRV122I amyloidosis ( )
UniProt ID
TTHY_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1BM7 ; 1BMZ ; 1BZ8 ; 1BZD ; 1BZE ; 1DVQ ; 1DVS ; 1DVT ; 1DVU ; 1DVX ; 1DVY ; 1DVZ ; 1E3F ; 1E4H ; 1E5A ; 1ETA ; 1ETB ; 1F41 ; 1F86 ; 1FH2 ; 1FHN ; 1G1O ; 1GKO ; 1ICT ; 1III ; 1IIK ; 1IJN ; 1QAB ; 1QWH ; 1RLB ; 1SOK ; 1SOQ ; 1THA ; 1THC ; 1TLM ; 1TSH ; 1TT6 ; 1TTA ; 1TTB ; 1TTC ; 1TTR ; 1TYR ; 1TZ8 ; 1U21 ; 1X7S ; 1X7T ; 1Y1D ; 1Z7J ; 1ZCR ; 1ZD6 ; 2B14 ; 2B15 ; 2B16 ; 2B77 ; 2B9A ; 2F7I ; 2F8I ; 2FBR ; 2FLM ; 2G3X ; 2G3Z ; 2G4E ; 2G4G ; 2G5U ; 2G9K ; 2GAB ; 2H4E ; 2M5N ; 2NBO ; 2NBP ; 2NOY ; 2PAB ; 2QEL ; 2QGB ; 2QGC ; 2QGD ; 2QGE ; 2ROX ; 2ROY ; 2TRH ; 2TRY ; 2WQA ; 3A4D ; 3A4E ; 3A4F ; 3B56 ; 3BSZ ; 3BT0 ; 3CBR ; 3CFM ; 3CFN ; 3CFQ ; 3CFT ; 3CN0 ; 3CN1 ; 3CN2 ; 3CN3 ; 3CN4 ; 3CXF ; 3D2T ; 3D7P ; 3DGD ; 3DID ; 3DJR ; 3DJS ; 3DJT ; 3DJZ ; 3DK0 ; 3DK2 ; 3DO4 ; 3ESN ; 3ESO ; 3ESP ; 3FC8 ; 3FCB ; 3GLZ ; 3GPS ; 3GRB ; 3GRG ; 3GS0 ; 3GS4 ; 3GS7 ; 3HJ0 ; 3I9A ; 3I9I ; 3I9P ; 3IMR ; 3IMS ; 3IMT ; 3IMU ; 3IMV ; 3IMW ; 3IPB ; 3IPE ; 3KGS ; 3KGT ; 3KGU ; 3M1O ; 3NEE ; 3NEO ; 3NES ; 3NEX ; 3NG5 ; 3OZK ; 3OZL ; 3P3R ; 3P3S ; 3P3T ; 3P3U ; 3SSG ; 3TCT ; 3TFB ; 3U2I ; 3U2J ; 3W3B ; 4ABQ ; 4ABU ; 4ABV ; 4ABW ; 4AC2 ; 4AC4 ; 4ACT ; 4ANK ; 4D7B ; 4DER ; 4DES ; 4DET ; 4DEU ; 4DEW ; 4FI6 ; 4FI7 ; 4FI8 ; 4HIQ ; 4HIS ; 4HJS ; 4HJT ; 4HJU ; 4I85 ; 4I87 ; 4I89 ; 4IIZ ; 4IK6 ; 4IK7 ; 4IKI ; 4IKJ ; 4IKK ; 4IKL ; 4KY2 ; 4L1S ; 4L1T ; 4MAS ; 4MRB ; 4MRC ; 4N85 ; 4N86 ; 4N87 ; 4PM1 ; 4PME ; 4PMF ; 4PVL ; 4PVM ; 4PVN ; 4PWE ; 4PWF ; 4PWG ; 4PWH ; 4PWI ; 4PWJ ; 4PWK ; 4QRF ; 4QXV ; 4QYA ; 4TKW ; 4TL4 ; 4TL5 ; 4TLK ; 4TLS ; 4TLT ; 4TLU ; 4TM9 ; 4TNE ; 4TNF ; 4TNG ; 4TQ8 ; 4TQH ; 4TQI ; 4TQP ; 4WNJ ; 4WNS ; 4WO0 ; 4Y9B ; 4Y9C ; 4Y9E ; 4Y9F ; 4Y9G ; 4YDM ; 4YDN ; 5A6I ; 5AKS ; 5AKT ; 5AKV ; 5AL0 ; 5AL8 ; 5AYT ; 5BOJ ; 5CLX ; 5CLY ; 5CLZ ; 5CM1 ; 5CN3 ; 5CNH ; 5CR1 ; 5DEJ ; 5DWP ; 5E23 ; 5E4A ; 5E4O ; 5EN3 ; 5EZP ; 5FO2 ; 5FW6 ; 5FW7 ; 5FW8 ; 5H0V ; 5H0W ; 5H0X ; 5H0Y ; 5H0Z ; 5HJG ; 5IHH ; 5JID ; 5JIM ; 5JIQ ; 5K1J ; 5K1N ; 5L4F ; 5L4I ; 5L4J ; 5L4M ; 5LLL ; 5LLV ; 5N5Q ; 5N62 ; 5N7C ; 5NFE ; 5NFW ; 5OQ0 ; 5TTR ; 5TZL ; 5U48 ; 5U49 ; 5U4A ; 5U4B ; 5U4C ; 5U4D ; 5U4E ; 5U4F ; 5U4G ; 6D0W ; 6E6Z ; 6E70 ; 6E71 ; 6E72 ; 6E73 ; 6E74 ; 6E75 ; 6E76 ; 6E77 ; 6E78 ; 6EOY ; 6EP1 ; 6FFT ; 6FWD ; 6FXU ; 6FZL ; 6GR7 ; 6GRP ; 6IMX ; 6IMY ; 6KGB ; 6R66 ; 6R67 ; 6R68 ; 6R6I ; 6SDZ ; 6SUG ; 6SUH ; 6TI9 ; 6TJN ; 6TXV ; 6TXW ; 6U0Q ; 6XTK ; 7ACU ; 7DT3 ; 7DT5 ; 7DT6 ; 7DT8 ; 7EJQ ; 7EJR ; 7ERH ; 7ERI ; 7ERJ ; 7ERK ; 7OB4 ; 7Q3I ; 7Q9L ; 7Q9N ; 7Q9O ; 7QC5 ; 7THA ; 7W9Q ; 7W9R ; 7WL6 ; 7Y1I ; 7Y6J ; 7YBR ; 7YCQ ; 7Z60 ; 8ADE ; 8AWI ; 8AWW ; 8E7D ; 8E7E ; 8E7H ; 8E7I ; 8E7J ; 8HEJ ; 8HY4 ; 8IG1 ; 8II1 ; 8II2 ; 8II3 ; 8II4 ; 8PKE ; 8PKF ; 8PKG ; 8W42 ; 8W43 ; 8W44 ; 8W45 ; 8W46 ; 8W47 ; 8W48
Pfam ID
PF00576
Sequence
MASHRLLLLCLAGLVFVSEAGPTGTGESKCPLMVKVLDAVRGSPAINVAVHVFRKAADDT
WEPFASGKTSESGELHGLTTEEEFVEGIYKVEIDTKSYWKALGISPFHEHAEVVFTANDS
GPRRYTIAALLSPYSYSTTAVVTNPKE
Function Thyroid hormone-binding protein. Probably transports thyroxine from the bloodstream to the brain.
Tissue Specificity Detected in serum and cerebrospinal fluid (at protein level). Highly expressed in choroid plexus epithelial cells. Detected in retina pigment epithelium and liver.
KEGG Pathway
Thyroid hormone synthesis (hsa04918 )
Reactome Pathway
The canonical retinoid cycle in rods (twilight vision) (R-HSA-2453902 )
Non-integrin membrane-ECM interactions (R-HSA-3000171 )
Neutrophil degranulation (R-HSA-6798695 )
Retinoid metabolism and transport (R-HSA-975634 )
Amyloid fiber formation (R-HSA-977225 )
Retinoid cycle disease events (R-HSA-2453864 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Obsolete hereditary ATTR amyloidosis DIS45HVQ Definitive Autosomal dominant [1]
Transthyretin amyloidosis DISJP3J0 Definitive Autosomal dominant [2]
Heart arrhythmia DISLKUNL Strong Autosomal dominant [3]
ATTRV122I amyloidosis DISUVZO0 Supportive Autosomal dominant [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Transthyretin. [5]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Transthyretin. [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transthyretin. [16]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transthyretin. [6]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Transthyretin. [7]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Transthyretin. [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Transthyretin. [10]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Transthyretin. [11]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of Transthyretin. [13]
Benzylpenicillin DMS9503 Phase 3 Benzylpenicillin decreases the expression of Transthyretin. [13]
PJ34 DMXO6YH Preclinical PJ34 increases the expression of Transthyretin. [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Transthyretin. [18]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE increases the expression of Transthyretin. [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
7 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Triclosan DMZUR4N Approved Triclosan affects the binding of Transthyretin. [12]
Carbamazepine DMZOLBI Approved Carbamazepine affects the binding of Transthyretin. [12]
Liothyronine DM6IR3P Approved Liothyronine affects the binding of Transthyretin. [14]
Diflunisal DM7EN8I Approved Diflunisal affects the binding of Transthyretin. [15]
L-thyroxine DM83HWL Investigative L-thyroxine affects the binding of Transthyretin. [19]
1-anilinonaphthalene-8-sulfonic acid DMNGY0E Investigative 1-anilinonaphthalene-8-sulfonic acid affects the binding of Transthyretin. [20]
3,5-dibromo-2-(2,4-dibromophenoxy)phenol DMCEY6O Investigative 3,5-dibromo-2-(2,4-dibromophenoxy)phenol affects the binding of Transthyretin. [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
3 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
4 The V122I cardiomyopathy variant of transthyretin increases the velocity of rate-limiting tetramer dissociation, resulting in accelerated amyloidosis. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14943-8. doi: 10.1073/pnas.261419998.
5 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
6 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
7 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
8 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
12 Assessment of endocrine disruption and oxidative potential of bisphenol-A, triclosan, nonylphenol, diethylhexyl phthalate, galaxolide, and carbamazepine, common contaminants of municipal biosolids. Toxicol In Vitro. 2018 Apr;48:342-349. doi: 10.1016/j.tiv.2018.02.003. Epub 2018 Feb 7.
13 Evaluation of developmental toxicity using undifferentiated human embryonic stem cells. J Appl Toxicol. 2015 Feb;35(2):205-18.
14 Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicology. 2010 Nov 9;277(1-3):20-8. doi: 10.1016/j.tox.2010.08.012. Epub 2010 Sep 8.
15 In vivo stabilization of mutant human transthyretin in transgenic mice. Amyloid. 2007 Sep;14(3):227-36. doi: 10.1080/13506120701464396.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 PARP inhibitor activates the intrinsic pathway of apoptosis in primary lung cancer cells. Cancer Invest. 2014 Aug;32(7):339-48. doi: 10.3109/07357907.2014.919303. Epub 2014 Jun 4.
18 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
19 Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol Appl Pharmacol. 2000 Jan 1;162(1):10-21. doi: 10.1006/taap.1999.8826.
20 Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ Health Perspect. 2013 Jun;121(6):657-62. doi: 10.1289/ehp.1206198. Epub 2013 Apr 12.