General Information of Drug Off-Target (DOT) (ID: OTCHH25G)

DOT Name Sodium-coupled neutral amino acid transporter 3 (SLC38A3)
Synonyms N-system amino acid transporter 1; Na(+)-coupled neutral amino acid transporter 3; Solute carrier family 38 member 3; System N amino acid transporter 1
Gene Name SLC38A3
Related Disease
Developmental and epileptic encephalopathy 102 ( )
UniProt ID
S38A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF01490
Sequence
MEAPLQTEMVELVPNGKHSEGLLPVITPMAGNQRVEDPARSCMEGKSFLQKSPSKEPHFT
DFEGKTSFGMSVFNLSNAIMGSGILGLAYAMANTGIILFLFLLTAVALLSSYSIHLLLKS
SGVVGIRAYEQLGYRAFGTPGKLAAALAITLQNIGAMSSYLYIIKSELPLVIQTFLNLEE
KTSDWYMNGNYLVILVSVTIILPLALMRQLGYLGYSSGFSLSCMVFFLIAVIYKKFHVPC
PLPPNFNNTTGNFSHVEIVKEKVQLQVEPEASAFCTPSYFTLNSQTAYTIPIMAFAFVCH
PEVLPIYTELKDPSKKKMQHISNLSIAVMYIMYFLAALFGYLTFYNGVESELLHTYSKVD
PFDVLILCVRVAVLTAVTLTVPIVLFPVRRAIQQMLFPNQEFSWLRHVLIAVGLLTCINL
LVIFAPNILGIFGVIGATSAPFLIFIFPAIFYFRIMPTEKEPARSTPKILALCFAMLGFL
LMTMSLSFIIIDWASGTSRHGGNH
Function
Symporter that cotransports specific neutral amino acids and sodium ions, coupled to an H(+) antiporter activity. Mainly participates in the glutamate-GABA-glutamine cycle in brain where it transports L-glutamine from astrocytes in the intercellular space for the replenishment of both neurotransmitters glutamate and gamma-aminobutyric acid (GABA) in neurons and also functions as the major influx transporter in ganglion cells mediating the uptake of glutamine. The transport activity is specific for L-glutamine, L-histidine and L-asparagine. The transport is electroneutral coupled to the cotransport of 1 Na(+) and the antiport of 1 H(+). The transport is pH dependent, saturable, Li(+) tolerant and functions in both direction depending on the concentration gradients of its substrates and cotransported ions. Also mediates an amino acid-gated H(+) conductance that is not stoichiometrically coupled to the amino acid transport but which influences the ionic gradients that drive the amino acid transport. In addition, may play a role in nitrogen metabolism, amino acid homeostasis, glucose metabolism and renal ammoniagenesis.
KEGG Pathway
Glutamatergic sy.pse (hsa04724 )
GABAergic sy.pse (hsa04727 )
Proximal tubule bicarbo.te reclamation (hsa04964 )
Reactome Pathway
Amino acid transport across the plasma membrane (R-HSA-352230 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Developmental and epileptic encephalopathy 102 DISBVQ7G Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [3]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [7]
Carbamazepine DMZOLBI Approved Carbamazepine increases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [8]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [9]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [9]
Zidovudine DM4KI7O Approved Zidovudine increases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [10]
Propofol DMB4OLE Approved Propofol decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [15]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [16]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [12]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Sodium-coupled neutral amino acid transporter 3 (SLC38A3). [14]
------------------------------------------------------------------------------------

References

1 Biallelic variants in SLC38A3 encoding a glutamine transporter cause epileptic encephalopathy. Brain. 2022 Apr 29;145(3):909-924. doi: 10.1093/brain/awab369.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther. 2006 Nov;80(5):440-456.
9 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
10 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
11 Propofol suppresses proliferation, migration, invasion, and tumor growth of liver cancer cells via suppressing cancer susceptibility candidate 9/phosphatase and tensin homolog/AKT serine/threonine kinase/mechanistic target of rapamycin kinase axis. Hum Exp Toxicol. 2022 Jan-Dec;41:9603271211065972. doi: 10.1177/09603271211065972.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
16 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
17 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.