General Information of Drug Off-Target (DOT) (ID: OTCKI2IZ)

DOT Name Claudin-9 (CLDN9)
Gene Name CLDN9
Related Disease
Hepatocellular carcinoma ( )
Prostate cancer ( )
Prostate neoplasm ( )
Sensorineural hearing loss disorder ( )
Hearing loss, autosomal recessive 116 ( )
UniProt ID
CLD9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6OV2; 6OV3
Pfam ID
PF00822
Sequence
MASTGLELLGMTLAVLGWLGTLVSCALPLWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTG
QMQCKVYDSLLALPQDLQAARALCVIALLLALLGLLVAITGAQCTTCVEDEGAKARIVLT
AGVILLLAGILVLIPVCWTAHAIIQDFYNPLVAEALKRELGASLYLGWAAAALLMLGGGL
LCCTCPPPQVERPRGPRLGYSIPSRSGASGLDKRDYV
Function
Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity; (Microbial infection) Acts as a receptor for hepatitis C virus (HCV) entry into hepatic cells.
Tissue Specificity Expressed in the liver, in peripheral blood mononuclear cells and hepatocarcinoma cell lines.
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Tight junction (hsa04530 )
Leukocyte transendothelial migration (hsa04670 )
Pathogenic Escherichia coli infection (hsa05130 )
Hepatitis C (hsa05160 )
Reactome Pathway
Tight junction interactions (R-HSA-420029 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hepatocellular carcinoma DIS0J828 Strong Biomarker [1]
Prostate cancer DISF190Y Strong Biomarker [2]
Prostate neoplasm DISHDKGQ Strong Biomarker [2]
Sensorineural hearing loss disorder DISJV45Z Strong Biomarker [3]
Hearing loss, autosomal recessive 116 DIS2D26C Limited Unknown [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Claudin-9 (CLDN9). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Claudin-9 (CLDN9). [13]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Claudin-9 (CLDN9). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Claudin-9 (CLDN9). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Claudin-9 (CLDN9). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Claudin-9 (CLDN9). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Claudin-9 (CLDN9). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Claudin-9 (CLDN9). [10]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Claudin-9 (CLDN9). [11]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Claudin-9 (CLDN9). [12]
Azacitidine DMTA5OE Approved Azacitidine increases the expression of Claudin-9 (CLDN9). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Claudin-9 (CLDN9). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Claudin-9 (CLDN9). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Claudin-9 enhances the metastatic potential of hepatocytes via Tyk2/Stat3 signaling.Turk J Gastroenterol. 2019 Aug;30(8):722-731. doi: 10.5152/tjg.2019.18513.
2 Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model.Prostate. 2007 Jan 1;67(1):83-106. doi: 10.1002/pros.20505.
3 A truncating CLDN9 variant is associated with autosomal recessive nonsyndromic hearing loss. Hum Genet. 2019 Oct;138(10):1071-1075. doi: 10.1007/s00439-019-02037-1. Epub 2019 Jun 7.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
9 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
10 Prevention of murine experimental corneal trauma by epigenetic events regulating claudin 6 and claudin 9. Jpn J Ophthalmol. 2008 May-Jun;52(3):195-203. doi: 10.1007/s10384-008-0524-z. Epub 2008 Jul 27.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
13 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.