General Information of Drug Off-Target (DOT) (ID: OTE5CMEP)

DOT Name MANSC domain-containing protein 1 (MANSC1)
Synonyms Loss of heterozygosity 12 chromosomal region 3 protein
Gene Name MANSC1
UniProt ID
MANS1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07502
Sequence
MFFGGEGSLTYTLVIICFLTLRLSASQNCLKKSLEDVVIDIQSSLSKGIRGNEPVYTSTQ
EDCINSCCSTKNISGDKACNLMIFDTRKTARQPNCYLFFCPNEEACPLKPAKGLMSYRII
TDFPSLTRNLPSQELPQEDSLLHGQFSQAVTPLAHHHTDYSKPTDISWRDTLSQKFGSSD
HLEKLFKMDEASAQLLAYKEKGHSQSSQFSSDQEIAHLLPENVSALPATVAVASPHTTSA
TPKPATLLPTNASVTPSGTSQPQLATTAPPVTTVTSQPPTTLISTVFTRAAATLQAMATT
AVLTTTFQAPTDSKGSLETIPFTEISNLTLNTGNVYNPTALSMSNVESSTMNKTASWEGR
EASPGSSSQGSVPENQYGLPFEKWLLIGSLLFGVLFLVIGLVLLGRILSESLRRKRYSRL
DYLINGIYVDI
Tissue Specificity Widely expressed.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of MANSC domain-containing protein 1 (MANSC1). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of MANSC domain-containing protein 1 (MANSC1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of MANSC domain-containing protein 1 (MANSC1). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of MANSC domain-containing protein 1 (MANSC1). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of MANSC domain-containing protein 1 (MANSC1). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of MANSC domain-containing protein 1 (MANSC1). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of MANSC domain-containing protein 1 (MANSC1). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of MANSC domain-containing protein 1 (MANSC1). [8]
Quercetin DM3NC4M Approved Quercetin decreases the expression of MANSC domain-containing protein 1 (MANSC1). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of MANSC domain-containing protein 1 (MANSC1). [10]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the expression of MANSC domain-containing protein 1 (MANSC1). [11]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of MANSC domain-containing protein 1 (MANSC1). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of MANSC domain-containing protein 1 (MANSC1). [14]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of MANSC domain-containing protein 1 (MANSC1). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of MANSC domain-containing protein 1 (MANSC1). [12]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
12 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
15 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.