General Information of Drug Off-Target (DOT) (ID: OTERJTUL)

DOT Name Sushi domain-containing protein 3 (SUSD3)
Gene Name SUSD3
Related Disease
Breast cancer ( )
Breast carcinoma ( )
Breast neoplasm ( )
UniProt ID
SUSD3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00084
Sequence
MRWAAATLRGKARPRGRAGVTTPAPGNRTGTCAKLRLPPQATFQVLRGNGASVGTVLMFR
CPSNHQMVGSGLLTCTWKGSIAEWSSGSPVCKLVPPHETFGFKVAVIASIVSCAIILLMS
MAFLTCCLLKCVKKSKRRRSNRSAQLWSQLKDEDLETVQAAYLGLKHFNKPVSGPSQAHD
NHSFTTDHGESTSKLASVTRSVDKDPGIPRALSLSGSSSSPQAQVMVHMANPRQPLPASG
LATGMPQQPAAYALG
Function May play a role in breast tumorigenesis by promoting estrogen-dependent cell proliferation, cell-cell interactions and migration.
Tissue Specificity Highly expressed in estrogen receptor-positive breast tumors.

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Breast cancer DIS7DPX1 Strong Biomarker [1]
Breast carcinoma DIS2UE88 Strong Biomarker [1]
Breast neoplasm DISNGJLM Strong Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Sushi domain-containing protein 3 (SUSD3). [2]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sushi domain-containing protein 3 (SUSD3). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sushi domain-containing protein 3 (SUSD3). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sushi domain-containing protein 3 (SUSD3). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sushi domain-containing protein 3 (SUSD3). [6]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Sushi domain-containing protein 3 (SUSD3). [3]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Sushi domain-containing protein 3 (SUSD3). [7]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Sushi domain-containing protein 3 (SUSD3). [8]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Sushi domain-containing protein 3 (SUSD3). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Sushi domain-containing protein 3 (SUSD3). [9]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Sushi domain-containing protein 3 (SUSD3). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sushi domain-containing protein 3 (SUSD3). [3]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Sushi domain-containing protein 3 (SUSD3). [11]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Sushi domain-containing protein 3 (SUSD3). [12]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Sushi domain-containing protein 3 (SUSD3). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Estrogen-dependent sushi domain containing 3 regulates cytoskeleton organization and migration in breast cancer cells.Oncogene. 2015 Jan 15;34(3):323-33. doi: 10.1038/onc.2013.553. Epub 2014 Jan 13.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
8 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
9 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
10 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
11 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
13 Comparison of the global gene expression profiles produced by methylparaben, n-butylparaben and 17beta-oestradiol in MCF7 human breast cancer cells. J Appl Toxicol. 2007 Jan-Feb;27(1):67-77. doi: 10.1002/jat.1200.