General Information of Drug Off-Target (DOT) (ID: OTESX51F)

DOT Name Bombesin receptor-activated protein C6orf89 (C6ORF89)
Synonyms Amfion
Gene Name C6ORF89
UniProt ID
CF089_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MDLAANEISIYDKLSETVDLVRQTGHQCGMSEKAIEKFIRQLLEKNEPQRPPPQYPLLIV
VYKVLATLGLILLTAYFVIQPFSPLAPEPVLSGAHTWRSLIHHIRLMSLPIAKKYMSENK
GVPLHGGDEDRPFPDFDPWWTNDCEQNESEPIPANCTGCAQKHLKVMLLEDAPRKFERLH
PLVIKTGKPLLEEEIQHFLCQYPEATEGFSEGFFAKWWRCFPERWFPFPYPWRRPLNRSQ
MLRELFPVFTHLPFPKDASLNKCSFLHPEPVVGSKMHKMPDLFIIGSGEAMLQLIPPFQC
RRHCQSVAMPIEPGDIGYVDTTHWKVYVIARGVQPLVICDGTAFSEL
Function Exhibits histone deacetylase (HDAC) enhancer properties. May play a role in cell cycle progression and wound repair of bronchial epithelial cells.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
7 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [1]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [2]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [3]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [4]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [6]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Bombesin receptor-activated protein C6orf89 (C6ORF89). [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Drug(s)

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
5 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
6 New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol. 2016 Jun;90(6):1449-58.
7 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.