General Information of Drug Off-Target (DOT) (ID: OTFFGNPT)

DOT Name Ral GTPase-activating protein subunit alpha-2 (RALGAPA2)
Synonyms 250 kDa substrate of Akt; AS250; p220
Gene Name RALGAPA2
Related Disease
Bladder cancer ( )
Neoplasm ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
UniProt ID
RGPA2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF20412 ; PF02145
Sequence
MFSRRSHGDVKKSTQKVLDPKKDVLTRLKHLRALLDNVDANDLKQFFETNYSQIYFIFYE
NFIALENSLKLKGNNKSQREELDSILFLFEKILQFLPERIFFRWHYQSIGSTLKKLLHTG
NSIKIRCEGIRLFLLWLQALQTNCAEEQVLIFACLVPGFPAVMSSRGPCTLETLINPSPS
VADVKIYPEEITPLLPAISGEKIAEDQTCFFLQILLKYMVIQAASLEWKNKENQDTGFKF
LFTLFRKYYLPHLFPSFTKLTNIYKPVLDIPHLRPKPVYITTTRDNENIYSTKIPYMAAR
VVFIKWIVTFFLEKKYLTATQNTKNGVDVLPKIIQTVGGGAVQERAPELDGGGPTEQDKS
HSNSSTLSDRRLSNSSLCSIEEEHRMVYEMVQRILLSTRGYVNFVNEVFHQAFLLPSCEI
AVTRKVVQVYRKWILQDKPVFMEEPDRKDVAQEDAEKLGFSETDSKEASSESSGHKRSSS
WGRTYSFTSAMSRGCVTEEENTNVKAGVQALLQVFLTNSANIFLLEPCAEVPVLLKEQVD
ACKAVLIIFRRMIMELTMNKKTWEQMLQILLRITEAVMQKPKDKQIKDLFAQSLAGLLFR
TLMVAWIRANLCVYISRELWDDFLGVLSSLTEWEELINEWANIMDSLTAVLARTVYGVEM
TNLPLDKLSEQKEKKQRGKGCVLDPQKGTTVGRSFSLSWRSHPDVTEPMRFRSATTSGAP
GVEKARNIVRQKATEVEECQQSENAPAAGSGHLTVGQQQQVLRSSSTSDIPEPLCSDSSQ
GQKAENTQNSSSSEPQPIQENKGHVKREHEGITILVRRSSSPAELDLKDDLQQTQGKCRE
RQKSESTNSDTTLGCTNEAELSMGPWQTCEEDPELNTPTDVVADADARHWLQLSPTDASN
LTDSSECLTDDCSIIAGGSLTGWHPDSAAVLWRRVLGILGDVNNIQSPKIHARVFCYLYE
LWYKLAKIRDNLAISLDNQSSPSPPVLIPPLRMFASWLFKAATLPNEYKEGKLQAYRLIC
AMMTRRQDVLPNSDFLVHFYLVMHLGLTSEDQDILNTIIRHCPPRFFSLGFPGFSMLVGD
FITAAARVLSTDILTAPRSEAVTVLGSLVCFPNTYQEIPLLQSVPEVNEAITGTEDVKHY
LINILLKNATEEPNEYARCIAVCSLGVWICEELAQCTSHPQVKEAINVIGVTLKFPNKIV
AQVACDVLQLLVSYWEKLQMFETSLPRKMAEILVATVAFLLPSAEYSSVETDKKFIVSLL
LCLLDWCMALPVSVLLHPVSTAVLEEQHSARAPLLDYIYRVLHCCVCGSSTYTQQSHYIL
TLADLSSTDYDPFLPLANVKSSEPVQYHSSAELGNLLTVEEEKKRRSLELIPLTARMVMA
HLVNHLGHYPLSGGPAILHSLVSENHDNAHVEGSELSFEVFRSPNLQLFVFNDSTLISYL
QTPTEGPVGGSPVGSLSDVRVIVRDISGKYSWDGKVLYGPLEGCLAPNGRNPSFLISSWH
RDTFGPQKDSSQVEEGDDVLDKLLENIGHTSPECLLPSQLNLNEPSLTPCGMNYDQEKEI
IEVILRQNAQEDEYIQSHNFDSAMKVTSQGQPSPVEPRGPFYFCRLLLDDLGMNSWDRRK
NFHLLKKNSKLLRELKNLDSRQCRETHKIAVFYIAEGQEDKCSILSNERGSQAYEDFVAG
LGWEVDLSTHCGFMGGLQRNGSTGQTAPYYATSTVEVIFHVSTRMPSDSDDSLTKKLRHL
GNDEVHIVWSEHSRDYRRGIIPTAFGDVSIIIYPMKNHMFFIAITKKPEVPFFGPLFDGA
IVSGKLLPSLVCATCINASRAVKCLIPLYQSFYEERALYLEAIIQNHREVMTFEDFAAQV
FSPSPSYSLSGTD
Function Catalytic subunit of the heterodimeric RalGAP2 complex which acts as a GTPase activator for the Ras-like small GTPases RALA and RALB.
KEGG Pathway
Ras sig.ling pathway (hsa04014 )
Reactome Pathway
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

4 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Bladder cancer DISUHNM0 Strong Biomarker [1]
Neoplasm DISZKGEW Strong Biomarker [2]
Urinary bladder cancer DISDV4T7 Strong Biomarker [1]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [8]
Testosterone DM7HUNW Approved Testosterone increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [8]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [9]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [11]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [12]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [13]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [16]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [7]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [15]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of Ral GTPase-activating protein subunit alpha-2 (RALGAPA2). [18]
------------------------------------------------------------------------------------

References

1 Downregulation of Ral GTPase-activating protein promotes tumor invasion and metastasis of bladder cancer.Oncogene. 2013 Feb 14;32(7):894-902. doi: 10.1038/onc.2012.101. Epub 2012 Mar 26.
2 Downregulation of RalGTPase-activating protein promotes invasion of prostatic epithelial cells and progression from intraepithelial neoplasia to cancer during prostate carcinogenesis.Carcinogenesis. 2019 Dec 31;40(12):1535-1544. doi: 10.1093/carcin/bgz082.
3 Design principles of concentration-dependent transcriptome deviations in drug-exposed differentiating stem cells. Chem Res Toxicol. 2014 Mar 17;27(3):408-20.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
7 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
8 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
9 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
12 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
13 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
14 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
15 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
16 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
17 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
18 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.