General Information of Disease (ID: DIS7HACE)

Disease Name Urinary bladder neoplasm
Synonyms
tumor of the urinary bladder; neoplasm of bladder; tumor of urinary bladder; tumor of bladder; tumor of the bladder; bladder tumor; urinary bladder tumours; bladder neoplasm; tumour of bladder; bladder tumors; neoplasm of the urinary bladder; bladder tumours; neoplasm of urinary bladder; bladder tumour; neoplasm of the bladder; urinary bladder tumor; urinary bladder tumors; tumour of the urinary bladder; tumour of urinary bladder; urinary bladder neoplasm; urinary bladder neoplasms; tumour of the bladder; urinary bladder neoplasm (disease); urinary bladder tumour
Definition A benign or malignant, primary or metastatic neoplasm of the bladder. - 2003
Disease Hierarchy
DISTBY9Z: Tumour
DISTVIQI: Bladder disease
DIS1VI2T: Urinary system neoplasm
DIS7HACE: Urinary bladder neoplasm
Disease Identifiers
MONDO ID
MONDO_0004987
MESH ID
D001749
UMLS CUI
C0005695
MedGen ID
594
HPO ID
HP:0009725
SNOMED CT ID
126885006

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 5 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Cisplatin DMRHGI9 Approved Small molecular drug [1]
Gemcitabine DMSE3I7 Approved Small molecular drug [2]
Lenalidomide DM6Q7U4 Approved Small molecular drug [3]
Mitomycin DMH0ZJE Approved Small molecular drug [4]
Thalidomide DM70BU5 Approved Small molecular drug [5]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 479 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ANXA10 TT0NL6U Limited Altered Expression [6]
CCND3 TT1JXNR Limited Biomarker [7]
CCR8 TTE836A Limited Altered Expression [8]
CDK4 TT0PG8F Limited Biomarker [9]
CDK7 TTQYF7G Limited Biomarker [10]
CGA TTFC29G Limited Biomarker [11]
CPS1 TT42M75 Limited Biomarker [12]
CPT1B TTDL0NY Limited Altered Expression [13]
GABRQ TTXDUR9 Limited Genetic Variation [14]
GGH TTZJRL0 Limited Biomarker [15]
GPR137 TTATO6X Limited Altered Expression [16]
GRM4 TTICZ1O Limited Biomarker [17]
HNMT TT2B6EV Limited Genetic Variation [18]
HNRNPA2B1 TT8UPW6 Limited Biomarker [19]
HTRA1 TT8POQR Limited Biomarker [20]
IFNW1 TTS2TGF Limited Genetic Variation [21]
IL25 TTVMO5W Limited Biomarker [22]
ISG15 TTVOH3T Limited Altered Expression [23]
ITGA6 TT165T3 Limited Altered Expression [24]
KAT2B TTVK7SB Limited Altered Expression [25]
KDM2A TT8XTY2 Limited Biomarker [26]
KLK2 TTJLNAW Limited Altered Expression [27]
LIMK1 TTWL9TY Limited Genetic Variation [28]
LTBR TTFO0PM Limited Biomarker [29]
MBTPS1 TTNSM2I Limited Altered Expression [30]
MELK TTBZOTY Limited Biomarker [31]
MERTK TTO7LKR Limited Biomarker [32]
MIA TT5HNVS Limited Genetic Variation [33]
NEDD8 TTNDC4K Limited Biomarker [34]
NFKB2 TTKLNRV Limited Biomarker [35]
NUAK1 TT65FL0 Limited Biomarker [36]
P2RY1 TTA93TL Limited Genetic Variation [37]
PABPC1 TTHC8EF Limited Biomarker [38]
PHB TT6U071 Limited Biomarker [39]
POR TTOQ9GZ Limited Biomarker [40]
PPARG TTT2SVW Limited Biomarker [41]
PRKD1 TTSLUMT Limited Altered Expression [42]
PSIP1 TTH9LDP Limited Biomarker [35]
RALBP1 TTVSRUA Limited Altered Expression [43]
RIPK4 TTB4S01 Limited Biomarker [44]
RSPO3 TT7HJTF Limited Biomarker [45]
S1PR1 TT9JZCK Limited Biomarker [46]
S1PR3 TTDYP7I Limited Biomarker [30]
SEMA4D TT5UT28 Limited Altered Expression [47]
SLC22A3 TTG2UMS Limited Altered Expression [48]
SRC TT6PKBN Limited Biomarker [49]
TPP1 TTOVYPT Limited Biomarker [50]
TPX2 TT0PHL4 Limited Altered Expression [51]
TYMP TTO0IB8 Limited Biomarker [52]
TYMS TTP1UKZ Limited Altered Expression [53]
TYRO3 TTIEMFN Limited Biomarker [32]
ZFP36L1 TT8QVJO Limited Genetic Variation [54]
PINX1 TT4FJ3A Disputed Biomarker [55]
ACR TTAHE2N moderate Biomarker [56]
AOX1 TT3MOS2 moderate Biomarker [57]
APOA4 TTNC3WS moderate Biomarker [58]
BMP10 TTTG6H1 moderate Altered Expression [59]
CD200 TT0BE68 moderate Biomarker [60]
DAPK3 TTERVQN moderate Biomarker [61]
DNM2 TTVRA5G moderate Altered Expression [62]
DSG3 TTEO4P8 moderate Altered Expression [63]
EHMT2 TTS6RZT moderate Altered Expression [64]
FPR1 TT5Y4EM moderate Altered Expression [65]
GDF2 TTAP4T1 moderate Biomarker [66]
GLO1 TTV9A7R moderate Altered Expression [67]
HDGF TTKGV26 moderate Biomarker [68]
IL31 TT1RJXK moderate Genetic Variation [69]
KCNN3 TT9JH25 moderate Altered Expression [70]
KDM4A TTZHPB8 moderate Biomarker [71]
KIF5A TTCJPAH moderate Biomarker [72]
LAG3 TTNVXAW moderate Biomarker [73]
NNT TTKIH76 moderate Biomarker [74]
NQO2 TTJLP0R moderate Altered Expression [75]
PLAU TTGY7WI moderate Biomarker [76]
PLOD1 TTEKJP3 moderate Altered Expression [77]
RAPGEF3 TTOE7I0 moderate Biomarker [78]
RAPGEF4 TTOS63B moderate Altered Expression [78]
SCAP TTL6U2P moderate Biomarker [79]
TLN1 TTQSMFG moderate Altered Expression [80]
USP13 TTVJIO2 moderate Altered Expression [81]
WNT7A TT8NARC moderate Biomarker [82]
ABCB1 TT3OT40 Strong Biomarker [83]
ABCC1 TTOI92F Strong Altered Expression [84]
ABCC3 TTVLG21 Strong Biomarker [85]
ACHE TT1RS9F Strong Altered Expression [86]
ACKR3 TTRQJTC Strong Biomarker [87]
ACVR1B TTPKHTZ Strong Altered Expression [88]
ADAMTS1 TTS2TEI Strong Altered Expression [89]
ADORA2A TTM2AOE Strong Biomarker [90]
AGR2 TT9K86S Strong Biomarker [91]
AKR1C3 TT5ZWB6 Strong Genetic Variation [92]
ALCAM TT2AFT6 Strong Altered Expression [93]
ALOX12 TT12ABZ Strong Biomarker [94]
ALPI TTHYMUV Strong Genetic Variation [95]
ANG TTURHFP Strong Biomarker [96]
ANPEP TTPHMWB Strong Biomarker [97]
ANXA1 TTUCK4B Strong Biomarker [98]
ANXA2R TTM7D9O Strong Biomarker [97]
AQP3 TTLDNMQ Strong Biomarker [99]
AR TTKPW01 Strong Biomarker [100]
ATG2B TTG6KCU Strong Genetic Variation [101]
ATIC TT9NVXQ Strong Altered Expression [102]
ATM TTKBM7V Strong Biomarker [103]
ATP7B TTOPO51 Strong Genetic Variation [104]
AURKA TTPS3C0 Strong Biomarker [105]
AURKB TT9RTBL Strong Biomarker [106]
AXL TTZPY6J Strong Biomarker [107]
BAP1 TT47RXJ Strong Biomarker [108]
BBC3 TT7JUKC Strong Biomarker [109]
BGN TT0JPVF Strong Altered Expression [110]
BIRC3 TTAIWZN Strong Biomarker [111]
BIRC5 TTTPU1G Strong Biomarker [112]
BIRC7 TTHZ8TA Strong Altered Expression [113]
BST2 TT90BJT Strong Posttranslational Modification [114]
BUB1 TT78309 Strong Genetic Variation [115]
CACNA1A TTX4QDJ Strong Biomarker [116]
CASP9 TTB6T7O Strong Altered Expression [117]
CCL17 TTMPHAE Strong Biomarker [118]
CCNA2 TTAMQ62 Strong Biomarker [119]
CCNB1 TT9P6OW Strong Altered Expression [120]
CCNE1 TTCEJ4F Strong Altered Expression [121]
CCNE2 TTLDRGX Strong Biomarker [121]
CCR4 TT7HQD0 Strong Biomarker [122]
CD163 TTTZ9DE Strong Biomarker [123]
CD24 TTCTYNP Strong Biomarker [124]
CD27 TTDO1MV Strong Biomarker [125]
CD276 TT6CQUM Strong Biomarker [126]
CD44 TTWFBT7 Strong Biomarker [127]
CD46 TTMS7DF Strong Altered Expression [128]
CD47 TT28S46 Strong Biomarker [129]
CD74 TTCMYP9 Strong Altered Expression [130]
CD9 TTZEIBV Strong Biomarker [131]
CDC20 TTBKFDV Strong Biomarker [132]
CDC25C TTESBNC Strong Altered Expression [133]
CDH1 TTLAWO6 Strong Biomarker [134]
CDH2 TT1WS0T Strong Genetic Variation [135]
CDKN1A TT9GUW0 Strong Biomarker [136]
CDKN2A TTFTWQ8 Strong Genetic Variation [137]
CEACAM3 TTPX7I5 Strong Altered Expression [138]
CGB3 TTUH273 Strong Altered Expression [139]
CHEK1 TTTU902 Strong Biomarker [140]
CHEK2 TT9ABMF Strong Therapeutic [141]
CLDN4 TTMTS9H Strong Altered Expression [142]
CLU TTRL76H Strong Biomarker [143]
CMA1 TT8VUE0 Strong Biomarker [144]
CNTN2 TT2Z1WB Strong Biomarker [145]
COL18A1 TT63DI9 Strong Biomarker [146]
COL6A3 TT5WCAH Strong Altered Expression [147]
CRAT TTC8M31 Strong Biomarker [148]
CREB1 TTH4AN3 Strong Altered Expression [149]
CREBBP TTFRCTK Strong Biomarker [150]
CRK TTFEUYR Strong Biomarker [151]
CSF3 TT5TQ2W Strong Therapeutic [152]
CTH TTLQUZS Strong Genetic Variation [153]
CTSC TT4H0V2 Strong Biomarker [154]
CTSS TTUMQVO Strong Altered Expression [155]
CUL3 TTPCU0Q Strong Biomarker [156]
CXCL1 TTLK1RW Strong Biomarker [157]
CXCL8 TTCTE1G Strong Biomarker [158]
CXCR2 TT30C9G Strong Biomarker [157]
CYP1A2 TTS1DTU Strong Genetic Variation [159]
CYP2B6 TTMH124 Strong Biomarker [160]
CYP3A5 TTHS0OK Strong Biomarker [161]
DBH TTYIP79 Strong Genetic Variation [162]
DCK TTJOCE4 Strong Altered Expression [163]
DCLK1 TTOHTCY Strong Biomarker [164]
DCN TTB3XAN Strong Biomarker [165]
DDR1 TTI1FPZ Strong Altered Expression [166]
DEFB4A TTIVY12 Strong Altered Expression [167]
DEK TT1NMGV Strong Biomarker [168]
DEPDC1 TT8S9CM Strong Biomarker [169]
DFFA TTYVQ9C Strong Biomarker [170]
DHCR24 TTTK0NH Strong Biomarker [171]
DLK1 TTF4AVB Strong Biomarker [172]
DLL4 TTV23LH Strong Altered Expression [173]
DNMT3B TT6VZ78 Strong Posttranslational Modification [174]
E2F1 TTASI04 Strong Biomarker [175]
E2F3 TTWIJYH Strong Altered Expression [176]
EBI3 TTJF68X Strong Biomarker [177]
EBP TT4VQZX Strong Genetic Variation [178]
EDNRB TT3ZTGU Strong Altered Expression [179]
EGFR TTGKNB4 Strong Biomarker [180]
EIF4EBP1 TTKGEBL Strong Posttranslational Modification [181]
EIF5A2 TTH53G9 Strong Biomarker [182]
ENOX2 TTUJZRL Strong Altered Expression [183]
EP300 TTGH73N Strong Biomarker [184]
EPCAM TTZ8WH4 Strong Biomarker [185]
EPHB4 TTI4ZX2 Strong Biomarker [186]
ERAP2 TTVGS1C Strong Altered Expression [187]
ERBB3 TTSINU2 Strong Biomarker [188]
ESR1 TTZAYWL Strong Biomarker [189]
ESR2 TTOM3J0 Strong Biomarker [190]
ESRRA TTPNQAC Strong Biomarker [191]
ETS2 TT9AH0M Strong Altered Expression [192]
FABP4 TTHWMFZ Strong Altered Expression [193]
FANCA TTV5HJS Strong Biomarker [194]
FANCF TTNZKFJ Strong Biomarker [195]
FAS TT7LTUJ Strong Genetic Variation [196]
FASLG TTO7014 Strong Genetic Variation [196]
FASN TT7AOUD Strong Biomarker [197]
FHL1 TTI7ENL Strong Altered Expression [198]
FOSL1 TTY8LZG Strong Biomarker [199]
FOXM1 TTD3KOX Strong Altered Expression [120]
FOXO1 TTLRVIA Strong Biomarker [200]
FOXQ1 TTEJZOL Strong Altered Expression [201]
FSCN1 TTTRS9B Strong Altered Expression [202]
FYN TT2B9KF Strong Biomarker [203]
GATA3 TT45KOB Strong Altered Expression [204]
GJB2 TTRGZX3 Strong Altered Expression [205]
GLI1 TTJOMH6 Strong Altered Expression [206]
GLI2 TT045OH Strong Biomarker [206]
GLIPR1 TTEQF1O Strong Altered Expression [207]
GNRH1 TT0ID4A Strong Biomarker [208]
GNRHR TT8R70G Strong Biomarker [208]
GPER1 TTDSB34 Strong Biomarker [209]
GPNMB TT7315J Strong Altered Expression [210]
GPR87 TTO897C Strong Altered Expression [211]
GSN TTUH7OM Strong Biomarker [212]
GSTO1 TTWO3SH Strong Genetic Variation [213]
GUSB TTHS7CM Strong Altered Expression [214]
HBB TTM6HK1 Strong Genetic Variation [215]
HDAC4 TTTQGH8 Strong Altered Expression [216]
HDAC6 TT5ZKDI Strong Altered Expression [217]
HDAC8 TTT6LFV Strong Biomarker [218]
HIPK2 TTOB49C Strong Biomarker [219]
HMGA2 TTSTVM0 Strong Biomarker [80]
HOXA13 TTN26OM Strong Biomarker [220]
HOXB13 TTZ6I58 Strong Genetic Variation [221]
HPGDS TTCYE56 Strong Genetic Variation [222]
HPSE TTR7GJO Strong Altered Expression [223]
HRAS TT28ZON Strong Biomarker [224]
HRH1 TTTIBOJ Strong Altered Expression [225]
HSP90AA1 TT78R5H Strong Biomarker [226]
HSPB3 TTLH8WG Strong Altered Expression [227]
HSPE1 TTWYMFE Strong Biomarker [228]
HTATIP2 TTC6IX5 Strong Biomarker [229]
IAPP TTHN8EM Strong Genetic Variation [95]
ID1 TTBXVDE Strong Altered Expression [230]
IDO1 TTZJYKH Strong Altered Expression [231]
IFNA2 TTSIUJ9 Strong Biomarker [232]
IFNAR1 TTSYFMA Strong Altered Expression [233]
IFNAR2 TTMQB37 Strong Altered Expression [233]
IFNB1 TT4TZ8J Strong Biomarker [234]
IGF2R TTPNE41 Strong Biomarker [235]
IGFBP1 TTCJTWF Strong Biomarker [236]
IGFBP2 TTU4QSN Strong Biomarker [237]
IGFBP3 TTZHNQA Strong Biomarker [238]
IGFBP5 TTDWEA8 Strong Biomarker [236]
IL15 TTJFA35 Strong Biomarker [239]
IL17D TTC5LTG Strong Genetic Variation [240]
IL20 TTNZMY2 Strong Biomarker [241]
IL5RA TTXH9AD Strong Biomarker [242]
ITCH TT5SEWD Strong Biomarker [243]
ITGA5 TTHIZP9 Strong Biomarker [244]
ITGAL TT48WR6 Strong Biomarker [245]
ITGAV TTT1R2L Strong Altered Expression [246]
ITPR1 TT5HWAT Strong Biomarker [247]
ITPR2 TTK9OV3 Strong Biomarker [247]
ITPR3 TTH1769 Strong Biomarker [247]
JUP TTREN0G Strong Altered Expression [248]
KCNJ11 TT329V4 Strong Altered Expression [249]
KDM5B TTCLI75 Strong Altered Expression [250]
KDM6B TTDIJUQ Strong Altered Expression [251]
KHDRBS1 TTAT6C7 Strong Altered Expression [102]
KIF20B TTQECT2 Strong Biomarker [252]
KISS1 TTU2O6T Strong Biomarker [253]
KLF4 TTTI53X Strong Biomarker [254]
KLK5 TTULSEW Strong Biomarker [255]
KMT2A TT1GNDM Strong Genetic Variation [256]
KRAS TTM8FR7 Strong Biomarker [257]
KRT19 TT3JF9E Strong Biomarker [258]
LAPTM4B TTEJQT0 Strong Biomarker [259]
LASP1 TTZJA87 Strong Altered Expression [260]
LDHA TTW76JE Strong Altered Expression [261]
LIMK2 TTASMD8 Strong Genetic Variation [28]
LIN28A TTO50LN Strong Altered Expression [262]
LPAR6 TTZDAGB Strong Genetic Variation [263]
LRP6 TTSXOWE Strong Altered Expression [264]
LTA TTP73TM Strong Genetic Variation [265]
LTB TTHQ6US Strong Biomarker [266]
LY6K TT5GKHN Strong Altered Expression [267]
MAD1L1 TTNE9U7 Strong Biomarker [268]
MAGEA3 TTWSKHD Strong Biomarker [269]
MAP2K2 TT8H9GB Strong Biomarker [270]
MAP3K14 TT4LIAC Strong Genetic Variation [271]
MAP3K7 TTJQT60 Strong Posttranslational Modification [272]
MAP3K8 TTGECUM Strong Biomarker [273]
MAP4 TT0VFPN Strong Altered Expression [274]
MAPK3 TT1MG9E Strong Biomarker [257]
MAPK9 TT3IVG2 Strong Altered Expression [275]
MAPKAPK2 TTMUG9D Strong Biomarker [276]
MAS1 TTOISYB Strong Biomarker [154]
MCM7 TT1RM3F Strong Biomarker [277]
MDK TTV8UE7 Strong Altered Expression [278]
MDM4 TT9OUDQ Strong Biomarker [279]
MFGE8 TT1GLAJ Strong Biomarker [280]
MKI67 TTB4UNG Strong Biomarker [281]
MLH1 TTISG27 Strong Biomarker [282]
MMP10 TTXLEG7 Strong Biomarker [283]
MMP11 TTZW4MV Strong Altered Expression [284]
MMP12 TTXZ0KQ Strong Genetic Variation [285]
MMP13 TTHY57M Strong Biomarker [118]
MMP16 TTNP4CU Strong Biomarker [286]
MMP8 TTGA1IV Strong Genetic Variation [287]
MPO TTVCZPI Strong Genetic Variation [288]
MRC1 TTKV8W5 Strong Altered Expression [289]
MSH2 TTCAWRT Strong Altered Expression [290]
MSI2 TTTXQF6 Strong Biomarker [291]
MSR1 TT2TDH9 Strong Biomarker [292]
MST1R TTBQ3OC Strong Biomarker [293]
MTDH TTH6SA5 Strong Biomarker [294]
MTNR1B TT32JK8 Strong Altered Expression [295]
MTOR TTCJG29 Strong Biomarker [296]
MUTYH TTNB0ZK Strong Genetic Variation [297]
MYC TTNQ5ZP Strong Altered Expression [249]
MYCN TT9JBY5 Strong Biomarker [298]
MYLK TT18ETS Strong Biomarker [299]
NAAA TTMN4HY Strong Biomarker [300]
NAMPT TTD1WIG Strong Biomarker [301]
NCOA3 TT124R0 Strong Altered Expression [302]
NDUFA13 TTRU1NG Strong Biomarker [303]
NECTIN4 TTPO9EG Strong Biomarker [304]
NELL1 TT7H4BF Strong Altered Expression [305]
NOTCH1 TTB1STW Strong Biomarker [306]
NOTCH2 TT82FVD Strong Biomarker [307]
NPEPPS TT371QC Strong Biomarker [308]
NPM1 TTHBS98 Strong Biomarker [309]
NR1I3 TTRANFM Strong Biomarker [128]
NR4A2 TT9HKN3 Strong Biomarker [310]
NRG4 TTWAGKJ Strong Altered Expression [311]
NT5E TTK0O6Y Strong Altered Expression [312]
NUAK2 TTHVOTQ Strong Altered Expression [313]
OSMR TTAH0KM Strong Genetic Variation [314]
PAK1 TTFN95D Strong Altered Expression [315]
PBK TTMY6BZ Strong Biomarker [316]
PBRM1 TTH8ZRL Strong Altered Expression [317]
PEMT TT735V2 Strong Genetic Variation [318]
PFKFB3 TTTHMQJ Strong Biomarker [319]
PGRMC1 TTY3LAZ Strong Biomarker [320]
PIGU TT2LHI6 Strong Biomarker [321]
PIK3CB TT9H4P3 Strong Biomarker [322]
PLAUR TTNOSTX Strong Biomarker [323]
PLK2 TT976FS Strong Biomarker [324]
PLOD2 TT8MEUD Strong Biomarker [325]
PML TTLH9NY Strong Altered Expression [326]
PNP TTMCF1Y Strong Biomarker [327]
POLB TTA0XPV Strong Biomarker [328]
PPM1A TTLA7IX Strong Altered Expression [329]
PPM1D TTENJAB Strong Biomarker [330]
PPP1CA TTFLH0E Strong Biomarker [331]
PPP5C TTTW7FJ Strong Biomarker [332]
PRKDC TTK3PY9 Strong Genetic Variation [333]
PRMT5 TTR1D7X Strong Biomarker [334]
PRTN3 TT5MLC4 Strong Biomarker [335]
PSCA TT9T4AV Strong Genetic Variation [336]
PTBP1 TTWMX0U Strong Biomarker [337]
PTGIS TTLXKZR Strong Altered Expression [338]
PTGS2 TTVKILB Strong Biomarker [339]
PTK2 TTON5IT Strong Biomarker [340]
PTK6 TT6TH8V Strong Biomarker [341]
PTP4A3 TT7YM8D Strong Altered Expression [342]
RARB TTISP28 Strong Genetic Variation [343]
RASA1 TTPNZ1F Strong Biomarker [344]
RENBP TTZCG0Q Strong Genetic Variation [345]
RGS2 TTKB7T3 Strong Posttranslational Modification [346]
RGS4 TTGTKX9 Strong Genetic Variation [347]
RGS6 TTJ96M8 Strong Genetic Variation [348]
RHOA TTP2U16 Strong Biomarker [349]
ROBO1 TTND1YP Strong Biomarker [350]
ROBO4 TT3S9TY Strong Biomarker [351]
ROCK1 TTZN7RP Strong Biomarker [352]
ROCK2 TTGWKQJ Strong Altered Expression [353]
RPE65 TTBOH16 Strong Biomarker [354]
RPS6KB1 TTG0U4H Strong Biomarker [355]
RRM1 TTWP0NS Strong Biomarker [356]
RRM2 TT1S4LJ Strong Altered Expression [357]
RXRA TT6PEUO Strong Biomarker [358]
S100A4 TTPR5SX Strong Biomarker [359]
S100A8 TT4AF6N Strong Altered Expression [360]
S100A9 TT0TMQG Strong Biomarker [361]
S100B TTQ0V86 Strong Altered Expression [362]
SATB1 TTLFRIC Strong Altered Expression [363]
SCD TT6RIOV Strong Altered Expression [364]
SDC1 TTYDSVG Strong Biomarker [365]
SERPINB5 TT1KW50 Strong Biomarker [366]
SLC12A7 TTU2PCD Strong Biomarker [97]
SLC16A1 TTN1J82 Strong Biomarker [144]
SLC19A1 TT09I7D Strong Altered Expression [367]
SLC34A2 TTQPZTM Strong Biomarker [368]
SLC38A3 TTMAVJQ Strong Genetic Variation [369]
SLC7A11 TTBZMIO Strong Biomarker [370]
SLCO1B1 TTFGXEB Strong Biomarker [371]
SLCO1B3 TTU86P0 Strong Genetic Variation [371]
SLCO2B1 TTDL3UZ Strong Genetic Variation [371]
SLIT2 TTDWK85 Strong Altered Expression [350]
SMYD3 TTKLJYX Strong Biomarker [372]
SNCG TT5TQNZ Strong Altered Expression [373]
SOD2 TT9O4C5 Strong Altered Expression [374]
SORD TTLSRBZ Strong Genetic Variation [375]
SOX2 TTCNOT6 Strong Altered Expression [376]
SPN TTOZAX0 Strong Biomarker [377]
SREBF2 TTRQ4AP Strong Genetic Variation [378]
SSRP1 TTETDKQ Strong Altered Expression [379]
SSTR1 TTIND6G Strong Altered Expression [380]
SSTR3 TTJX3UE Strong Altered Expression [380]
STAB1 TTJFEOC Strong Biomarker [361]
STS TTHM0R1 Strong Biomarker [381]
SUV39H1 TTUWQTK Strong Biomarker [382]
TACC3 TTQ4UFD Strong Altered Expression [383]
TACSTD2 TTP2HE5 Strong Biomarker [384]
TAGLN TTDRZ9H Strong Biomarker [385]
TAGLN2 TTP6BIJ Strong Biomarker [386]
TBK1 TTMP03S Strong Biomarker [387]
TBXAS1 TTKNWZ4 Strong Altered Expression [388]
TERF2 TT5XSLT Strong Biomarker [389]
TFRC TT8MG4S Strong Altered Expression [390]
TGFB3 TTWOMY8 Strong Biomarker [391]
TMPRSS6 TTL9KE7 Strong Altered Expression [295]
TNFRSF10A TT5WLRX Strong Genetic Variation [392]
TNFRSF14 TTWGTC1 Strong Altered Expression [393]
TNKS TTVUSO7 Strong Altered Expression [394]
TOP1 TTGTQHC Strong Biomarker [395]
TOP2A TTCGY2K Strong Biomarker [396]
TPH1 TTZSJHV Strong Altered Expression [148]
TRIM24 TT9Q7AE Strong Altered Expression [397]
TRIM59 TT613U4 Strong Biomarker [398]
TRPM2 TTEBMN7 Strong Biomarker [399]
TRPM7 TTFPVZO Strong Biomarker [400]
TRPV1 TTMI6F5 Strong Altered Expression [401]
TRPV2 TTBECWA Strong Biomarker [402]
TTK TTP7EGM Strong Biomarker [403]
TWIST1 TTX1MY7 Strong Biomarker [404]
UBC TTBP3XA Strong Biomarker [405]
UBE2T TT0A1R8 Strong Biomarker [406]
ULK1 TT4D7MJ Strong Altered Expression [407]
UMPS TTAFJUD Strong Altered Expression [52]
USP7 TTXU3EQ Strong Biomarker [408]
UTS2R TTW5UDX Strong Biomarker [409]
VANGL1 TT18WJB Strong Biomarker [410]
VEGFB TTPJQHE Strong Altered Expression [411]
VEGFC TT0QUFV Strong Biomarker [19]
VHL TTEMWSD Strong Biomarker [412]
VTCN1 TTCK85E Strong Biomarker [413]
WDR5 TT7OFWB Strong Biomarker [414]
XIAP TTK3WBU Strong Altered Expression [249]
XPA TTGT87E Strong Biomarker [415]
XRCC5 TTCB9KW Strong Genetic Variation [416]
YAP1 TT8UN2D Strong Biomarker [296]
ZNF217 TTY3BRA Strong Biomarker [417]
ZNF224 TT1CDXL Strong Biomarker [418]
BMI1 TTIPNSR Definitive Altered Expression [419]
BRD2 TTDP48B Definitive Biomarker [420]
BSG TT5UJWD Definitive Altered Expression [421]
CDK2 TT7HF4W Definitive Biomarker [121]
CEACAM1 TTA9CK4 Definitive Altered Expression [422]
COMT TTKWFB8 Definitive Genetic Variation [423]
CRYZ TTP6UO8 Definitive Biomarker [424]
CSF3R TTC70AJ Definitive Biomarker [425]
CTLA4 TTI2S1D Definitive Biomarker [426]
CTSD TTPT2QI Definitive Altered Expression [427]
CYP2C19 TTZ58XG Definitive Altered Expression [428]
DKK3 TTY2ZV6 Definitive Biomarker [429]
FGF4 TTCEKVZ Definitive Biomarker [430]
GSTA1 TT4P8DE Definitive Genetic Variation [431]
ILK TT7ALZG Definitive Biomarker [432]
ITGB1 TTBVIQC Definitive Altered Expression [433]
KLK3 TTS78AZ Definitive Altered Expression [27]
LTB4R2 TTVJX54 Definitive Biomarker [266]
MAP2K7 TT6QY3J Definitive Biomarker [434]
NGFR TTEDJN4 Definitive Altered Expression [435]
NR1H2 TTXA6PH Definitive Biomarker [436]
PAX5 TTA4REJ Definitive Altered Expression [437]
PDCD1 TTNBFWK Definitive Biomarker [438]
PLK1 TTH4IP0 Definitive Altered Expression [439]
RECK TTRZBW7 Definitive Biomarker [440]
RUNX3 TTKCVO7 Definitive Posttranslational Modification [441]
SLC14A1 TTWVJU1 Definitive Altered Expression [442]
SNAP25 TTYQWA0 Definitive Biomarker [388]
ZEB2 TTT2WK4 Definitive Biomarker [443]
------------------------------------------------------------------------------------
⏷ Show the Full List of 479 DTT(s)
This Disease Is Related to 12 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC11A1 DT650XW Strong Genetic Variation [444]
SLC16A10 DTPAQJO Strong Altered Expression [445]
SLC26A6 DTVGOLN Strong Biomarker [446]
SLC2A3 DT9SQ3L Strong Biomarker [447]
SLC30A1 DT1BO38 Strong Biomarker [448]
SLC31A1 DTP8L4F Strong Altered Expression [449]
SLC35A2 DT0567K Strong Genetic Variation [450]
SLC38A6 DTZUHR9 Strong Genetic Variation [369]
SLC39A11 DTEOAND Strong Genetic Variation [451]
SLC39A2 DTL8VXO Strong Genetic Variation [452]
SLC45A3 DTGEFXH Strong Genetic Variation [453]
SLCO6A1 DTIFXNS Strong Biomarker [454]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 DTP(s)
This Disease Is Related to 41 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP27A1 DEBS639 Limited Biomarker [455]
GGCT DEKW6PB Limited Altered Expression [456]
HK1 DEDMAGE Limited Therapeutic [457]
MT1A DE5ME8A Limited Biomarker [458]
THOP1 DE95LJC Limited Biomarker [290]
AKR1C4 DEAJN47 moderate Genetic Variation [459]
DHRS9 DEGTU5I moderate Genetic Variation [459]
MAT1A DEQ6NC9 moderate Biomarker [460]
PCYT1A DEQYXD4 moderate Biomarker [461]
UCK2 DETN1O0 moderate Altered Expression [462]
ACP3 DEDW5H6 Strong Biomarker [463]
ACSS2 DEE76VW Strong Biomarker [464]
ADH1C DEM1HNL Strong Genetic Variation [465]
AKR1B10 DEP6GT1 Strong Altered Expression [466]
AKR1C1 DE7P2FB Strong Biomarker [467]
AKR1C2 DEOY5ZM Strong Altered Expression [468]
AOC2 DE8DP90 Strong Biomarker [469]
AS3MT DE9KJP3 Strong Genetic Variation [470]
CYP2A13 DEXZA9U Strong Biomarker [471]
CYP4B1 DEMF740 Strong Genetic Variation [472]
DIO3 DET89OV Strong Altered Expression [172]
GLS DE3E0VT Strong Altered Expression [473]
GSTO2 DEHMPZR Strong Biomarker [99]
GSTZ1 DEQPEMB Strong Genetic Variation [474]
HSD3B1 DERDQWN Strong Biomarker [475]
HSD3B2 DEN0GVQ Strong Biomarker [475]
INPP4A DEBJ2NL Strong Biomarker [476]
MT2A DEFKGT7 Strong Biomarker [458]
MTARC1 DE1VDSF Strong Altered Expression [477]
NAT10 DEZV4AP Strong Biomarker [478]
NNMT DECVGJ3 Strong Altered Expression [479]
P3H2 DELB5PA Strong Genetic Variation [480]
PON2 DEHJU7E Strong Biomarker [481]
RDH14 DEWDJU4 Strong Altered Expression [482]
SMPDL3A DEQJ8N3 Strong Altered Expression [483]
SULT2A1 DE0P6LK Strong Biomarker [484]
UGT1A6 DESD26P Strong Altered Expression [485]
UGT1A7 DEZO4N3 Strong Genetic Variation [486]
UGT1A9 DE85D2P Strong Altered Expression [485]
UGT2B7 DEB3CV1 Strong Genetic Variation [487]
SULT1A1 DEYWLRK Definitive Biomarker [488]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 DME(s)
This Disease Is Related to 697 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ABCB10 OT1C44F9 Limited Biomarker [489]
ADGRG6 OTY2UBXO Limited Genetic Variation [490]
AFF4 OTTL5Y8R Limited Biomarker [491]
AGL OTWBM7WY Limited Biomarker [492]
AK4 OTA0T02Q Limited Biomarker [493]
AMFR OTQRX7LC Limited Biomarker [494]
ARPC4 OT0ZE01B Limited Altered Expression [495]
ASXL2 OTNG4E2M Limited Biomarker [194]
CBX5 OT8VYY84 Limited Altered Expression [496]
CCDC6 OTXRQDYG Limited Biomarker [408]
CD81 OTQFXNAZ Limited Altered Expression [497]
CDCP1 OTD7RRWK Limited Biomarker [498]
CENPO OTXAH83Y Limited Altered Expression [499]
CFL2 OTE2W0DH Limited Altered Expression [500]
CHAF1A OTXSSY4H Limited Altered Expression [25]
CHD6 OTEHW1U2 Limited Biomarker [501]
CLPTM1L OTDJWQXI Limited Biomarker [502]
DLG1 OTCRZYWT Limited Genetic Variation [489]
DUSP2 OTH54FMR Limited Biomarker [503]
ECM1 OT1K65VW Limited Altered Expression [504]
ERH OTJDWX99 Limited Biomarker [505]
ESPL1 OTMGEVOK Limited Biomarker [506]
ETV5 OTE2OBM4 Limited Biomarker [507]
FGF9 OT2SKDGM Limited Biomarker [508]
FRS2 OTDMD800 Limited Genetic Variation [490]
GTF2H4 OTPD1DIU Limited Biomarker [35]
GTSE1 OTPP742Z Limited Altered Expression [120]
HIC1 OTI9TWY4 Limited Biomarker [509]
HPSE2 OTGEPP8V Limited Genetic Variation [510]
HS3ST3B1 OTK53GUD Limited Altered Expression [511]
IL17RA OTVVI8ER Limited Biomarker [22]
IL17RB OT0KDNSF Limited Biomarker [22]
IL17RC OTEFOBSS Limited Biomarker [22]
ISL1 OTVNVKAX Limited Biomarker [512]
ISYNA1 OT49ONSE Limited Altered Expression [513]
KIF15 OTJRJEXL Limited Biomarker [434]
KLRB1 OTQ2959Y Limited Biomarker [239]
KMT2C OTC59BCO Limited Biomarker [501]
KMT2D OTTVHCLY Limited Genetic Variation [18]
KRT16 OTGA0EQN Limited Biomarker [514]
LINGO2 OT3N88Q1 Limited Genetic Variation [21]
LURAP1 OTJ1EZDJ Limited Genetic Variation [515]
MAGEA9 OTWGX2SD Limited Biomarker [516]
MED1 OTOO24C4 Limited Altered Expression [517]
MEIS2 OTG4ADLM Limited Biomarker [518]
MTHFD1L OTV01EFP Limited Altered Expression [519]
MYBL2 OTZ3JX8Q Limited Altered Expression [520]
MYNN OT61R1HP Limited Genetic Variation [521]
NCOR1 OT04XNOU Limited Biomarker [501]
NECTIN2 OTIE0W6O Limited Biomarker [522]
NFIX OT1DPZAE Limited Biomarker [523]
NRBP1 OTRWEJ65 Limited Biomarker [524]
PDLIM5 OTLQVV22 Limited Genetic Variation [28]
PEG10 OTWD2278 Limited Biomarker [264]
PHF14 OTZT3GV1 Limited Biomarker [525]
PKD2 OTIXBU8H Limited Altered Expression [42]
PODXL OTPNQXF3 Limited Biomarker [526]
PTMA OT2W4T1M Limited Biomarker [527]
RAB14 OTF1J0TB Limited Biomarker [528]
RAB1A OTKPHRD0 Limited Biomarker [529]
RAB38 OTU0NZU0 Limited Biomarker [530]
RACGAP1 OTQE8IEH Limited Biomarker [174]
RELB OTU3QYEF Limited Biomarker [29]
RNH1 OT6EC79B Limited Altered Expression [531]
ROMO1 OTIEYVBW Limited Altered Expression [532]
RWDD4 OTH18ZIC Limited Biomarker [533]
SART3 OTC1AM7S Limited Biomarker [534]
SMC1A OT9ZMRK9 Limited Biomarker [194]
SMC1B OTQVMF74 Limited Biomarker [194]
SPRR2A OT62ZU6B Limited Biomarker [27]
STK32C OTN4HBAA Limited Biomarker [535]
STX1A OTSBUZB4 Limited Altered Expression [536]
TEAD4 OTJS0T2B Limited Biomarker [121]
TEF OTY3LAD9 Limited Altered Expression [537]
TPM2 OTA1L0P8 Limited Altered Expression [500]
ACSS1 OT6C1WQD moderate Altered Expression [538]
AGPAT4 OT5CTQKO moderate Altered Expression [63]
APLF OTYUR3AH moderate Biomarker [539]
CDC6 OTX93FE7 moderate Biomarker [540]
CDCA2 OTX8UF9J moderate Altered Expression [541]
CENPM OTYK9KOX moderate Biomarker [542]
CETN3 OTG4PL7H moderate Biomarker [543]
CHGB OT7SAQT2 moderate Genetic Variation [544]
CIZ1 OT3UKHPI moderate Biomarker [545]
DDX31 OTNWY581 moderate Altered Expression [546]
DGCR8 OT62LXE4 moderate Biomarker [547]
DXO OTFDTNW4 moderate Biomarker [548]
ELF3 OTUTLEQO moderate Biomarker [549]
EOMES OTB9VQFA moderate Biomarker [97]
ESM1 OT331Y8V moderate Biomarker [550]
EYA4 OTINGR3Z moderate Biomarker [551]
GPX2 OTXI2NTI moderate Biomarker [552]
GZMA OT43R33L moderate Altered Expression [553]
HOXA10 OTB6GQ09 moderate Altered Expression [554]
HOXB2 OTTD6HMV moderate Biomarker [555]
HSDL2 OT4IN0MV moderate Biomarker [556]
IFIT5 OTYTSO77 moderate Biomarker [557]
IPO11 OTG19WN0 moderate Altered Expression [136]
KIF3A OTMUBSSK moderate Altered Expression [558]
KIFC1 OTNQDS00 moderate Biomarker [559]
KLF9 OTBFEJRQ moderate Altered Expression [560]
KRT6B OTBXJYHY moderate Altered Expression [561]
LHPP OT9AGAIJ moderate Biomarker [562]
MAP1LC3B OTUYHB84 moderate Altered Expression [563]
MARCHF1 OTI2EYO6 moderate Biomarker [564]
MEX3C OT8AJG1I moderate Altered Expression [565]
NET1 OTZHNMJV moderate Biomarker [566]
NOC2L OTNT7R33 moderate Genetic Variation [567]
NPLOC4 OTC1WUVF moderate Biomarker [548]
NUDT1 OTZSES3W moderate Biomarker [568]
NUDT21 OTZHKWAR moderate Altered Expression [569]
PADI2 OTT40K94 moderate Biomarker [570]
PCBP2 OTXCN9CG moderate Biomarker [571]
PCMT1 OTGYVSGU moderate Altered Expression [572]
PPP2R2A OT9297OG moderate Biomarker [573]
PRF1 OTFVXD7H moderate Altered Expression [553]
RAD21 OTQS84ZF moderate Biomarker [396]
RASSF6 OT25GVWY moderate Altered Expression [574]
RBM5 OTCBWHHV moderate Biomarker [575]
RGS20 OT6CGYHW moderate Biomarker [576]
SCIN OT6U09OL moderate Altered Expression [577]
SEC11A OT06L834 moderate Altered Expression [578]
SEMG1 OT6Z4BPQ moderate Genetic Variation [544]
SIGLEC1 OTNWSQA9 moderate Biomarker [579]
SLC35F2 OTSAD4EQ moderate Altered Expression [580]
SOX18 OTPUMHWA moderate Altered Expression [581]
SOX7 OTOZOFAG moderate Biomarker [582]
STIP1 OT7TXLOX moderate Altered Expression [583]
TCP1 OT1MGUX9 moderate Biomarker [461]
TFAP2C OTUDIW05 moderate Altered Expression [584]
THBS2 OTXET551 moderate Biomarker [585]
TMSB10 OTLVZ13T moderate Altered Expression [586]
AADAC OT8VACT2 Strong Biomarker [587]
ACTN1 OTUCLNXH Strong Biomarker [588]
ACTN4 OTCNZAJ5 Strong Biomarker [589]
ADAM15 OTZ7VLTP Strong Biomarker [590]
AGFG1 OTI8ZKC4 Strong Biomarker [591]
AGO2 OT4JY32Q Strong Altered Expression [592]
AHSA1 OTC7AFHT Strong Altered Expression [593]
ALKBH1 OTADGU5D Strong Altered Expression [594]
ALKBH2 OTSQW0BG Strong Biomarker [595]
ALKBH3 OTS1CD9Z Strong Biomarker [596]
ALKBH8 OTXN70DV Strong Altered Expression [597]
ALPP OTZU4G9W Strong Genetic Variation [95]
ANGPTL6 OTOQ5W67 Strong Biomarker [598]
ANKFY1 OTHT028D Strong Biomarker [97]
ANKRD36B OT3MW415 Strong Altered Expression [599]
ANKRD52 OTDAORW4 Strong Biomarker [600]
ANXA3 OTDD8OI7 Strong Altered Expression [228]
APAF1 OTJWIVY0 Strong Altered Expression [601]
APOBEC3A OTYO6F5P Strong Altered Expression [602]
APOBEC3B OTHLNI51 Strong Altered Expression [602]
ARHGAP24 OTCQCEZS Strong Altered Expression [603]
ARID1A OTRWDV3P Strong Biomarker [604]
ARID1B OTILK3Q7 Strong Altered Expression [605]
ARL6IP5 OTYZ6BEQ Strong Genetic Variation [606]
ARMC8 OTNAXGM7 Strong Biomarker [607]
ARR3 OTRZ00CH Strong Biomarker [128]
ASAP1 OT4DLRYY Strong Biomarker [97]
ASPM OTKXQMNA Strong Altered Expression [608]
ASS1 OT4ZMG0Q Strong Altered Expression [609]
ATF2 OTNIZPEA Strong Biomarker [610]
ATG12 OTJRO09Y Strong Genetic Variation [407]
ATP5F1D OTXTAG2V Strong Biomarker [97]
AXIN1 OTRGZGZ5 Strong Biomarker [611]
B4GALT1 OTBCXEK7 Strong Altered Expression [612]
B4GALT3 OTHX77K8 Strong Biomarker [613]
BAMBI OTCEJ8W5 Strong Posttranslational Modification [614]
BCAM OTHZOPSD Strong Biomarker [615]
BCAN OTPVY3ZR Strong Biomarker [616]
BCAR1 OTKT2C2N Strong Altered Expression [617]
BCL10 OT47MCLI Strong Biomarker [618]
BCL2L12 OTS6IFZY Strong Altered Expression [445]
BCLAF1 OT7T8H6A Strong Biomarker [372]
BLCAP OTGJVU0C Strong Biomarker [619]
BLM OTEJOAJX Strong Biomarker [542]
BLNK OTSSPF6F Strong Biomarker [620]
BPTF OTD1RZAD Strong Biomarker [621]
BRMS1 OTV5A6LL Strong Altered Expression [622]
BTG2 OTZF6K1H Strong Altered Expression [623]
BUB3 OTU91HAU Strong Genetic Variation [115]
CADM1 OTRWG9QS Strong Biomarker [624]
CALHM1 OTUZPEYQ Strong Biomarker [97]
CAMKMT OTLJBRUW Strong Biomarker [625]
CARD10 OT2RPM4I Strong Biomarker [626]
CBLIF OTNE20WU Strong Biomarker [627]
CBLL2 OTB4AD3V Strong Biomarker [564]
CCAR2 OTLUDG5T Strong Biomarker [628]
CCDC34 OTZ3AGSQ Strong Biomarker [629]
CCL1 OT23NON8 Strong Altered Expression [630]
CCL28 OTY6XNQ7 Strong Biomarker [631]
CCN3 OTOW5YL4 Strong Altered Expression [632]
CCNA1 OTX4HD45 Strong Biomarker [633]
CCNB2 OTIEXTDK Strong Biomarker [634]
CCNH OTKDU3SR Strong Genetic Variation [635]
CCNJ OTCR4WVV Strong Genetic Variation [636]
CD164 OTZ7FIU8 Strong Altered Expression [637]
CDC42EP3 OTUZ3U9Z Strong Biomarker [638]
CDK15 OT8S67QS Strong Genetic Variation [271]
CDK16 OTUBXIIT Strong Genetic Variation [271]
CDK2AP2 OTR99SJ8 Strong Posttranslational Modification [639]
CDKAL1 OTA0SGNE Strong Biomarker [640]
CDKN2B OTAG24N1 Strong Altered Expression [641]
CEACAM7 OTKFDTZY Strong Altered Expression [138]
CENPU OTQ4TZRS Strong Altered Expression [642]
CEP128 OT922YCJ Strong Biomarker [643]
CEP55 OTGSG2PA Strong Altered Expression [439]
CERS2 OTRAHYYP Strong Biomarker [644]
CFAP45 OT8I8ZHH Strong Biomarker [645]
CFHR1 OT72R16T Strong Biomarker [646]
CFL1 OTT6D5MH Strong Altered Expression [647]
CHD5 OTS5EVHH Strong Biomarker [256]
CIB2 OT9ZJX1I Strong Posttranslational Modification [648]
CILK1 OTWOYEYP Strong Genetic Variation [271]
CIP2A OTVS2GXA Strong Biomarker [649]
CIRBP OTXWTPBL Strong Biomarker [338]
CKAP4 OTDUC9ME Strong Biomarker [354]
CKS2 OTPTMHIV Strong Biomarker [650]
CLASP2 OT5YX0YB Strong Biomarker [651]
CLCA4 OTCRR1M9 Strong Biomarker [652]
CLIC3 OT5KUZ3A Strong Biomarker [653]
CMTM8 OTG28GH2 Strong Biomarker [654]
COL10A1 OTC4G2YC Strong Biomarker [655]
COL13A1 OTM9IM6J Strong Biomarker [656]
COL4A1 OTL6D1YE Strong Biomarker [656]
COL5A2 OT5VOSQE Strong Biomarker [657]
COP1 OT6J2K12 Strong Altered Expression [658]
COX2 OTTMVBJJ Strong Altered Expression [339]
CREB3L1 OT2JHIHM Strong Biomarker [659]
CRISP2 OT8HLTV5 Strong Altered Expression [585]
CRKL OTOYSD1R Strong Biomarker [660]
CSMD1 OTIVDSC4 Strong Genetic Variation [661]
CTNNA1 OTFC725Z Strong Biomarker [662]
CTNNA2 OTJ8G92T Strong Genetic Variation [663]
CTTN OTJRG4ES Strong Biomarker [430]
CUL4B OT2QX4DO Strong Altered Expression [664]
CWC27 OTB0HBP1 Strong Biomarker [665]
CXADR OT9ZP02A Strong Biomarker [128]
CXCL5 OTZOUPCA Strong Altered Expression [666]
CYTB OTAHB98A Strong Genetic Variation [667]
DAB2 OTRMQTMZ Strong Altered Expression [668]
DAP OT5YLL7E Strong Genetic Variation [669]
DAPK1 OTNCNUCO Strong Biomarker [670]
DBN1 OTZVKG8A Strong Altered Expression [671]
DCDC2 OTSUFH1H Strong Biomarker [672]
DCTN6 OTI8PIN9 Strong Altered Expression [673]
DCX OTISR7K3 Strong Biomarker [674]
DDX20 OT6G8YF3 Strong Genetic Variation [675]
DDX39A OT0Z6E1K Strong Biomarker [676]
DEDD OTIL349E Strong Biomarker [677]
DERL1 OTJUS74N Strong Altered Expression [678]
DHDDS OTVLYBUS Strong Biomarker [53]
DLG5 OTU9Z17K Strong Posttranslational Modification [679]
DLGAP5 OTWCN39U Strong Biomarker [680]
DMBT1 OTVNU9D9 Strong Altered Expression [681]
DMRTA1 OTRZY9E9 Strong Altered Expression [682]
DMTF1 OTDKO9OO Strong Biomarker [683]
DNA2 OT4DJFFU Strong Altered Expression [684]
DNER OT2GH2E5 Strong Biomarker [685]
DOC2A OT5G9V94 Strong Altered Expression [668]
DRG1 OTIFYMI3 Strong Biomarker [686]
DROSHA OTCE68KZ Strong Genetic Variation [687]
DUOX2 OTU14HCN Strong Biomarker [688]
E2F4 OTB3JFH4 Strong Biomarker [689]
EBAG9 OTTQLQCP Strong Biomarker [690]
ECHDC1 OTMS00PY Strong Biomarker [691]
EDIL3 OTDVVNS0 Strong Altered Expression [692]
EEF1E1 OTRA6XOB Strong Altered Expression [693]
EFNA1 OTU2NUA2 Strong Biomarker [694]
EFNB2 OT0DCUOM Strong Biomarker [695]
EIF3B OTF67VPH Strong Altered Expression [696]
EIF3D OTDOMP80 Strong Biomarker [320]
EIF3E OTI0WG98 Strong Altered Expression [697]
EIF4G2 OTEO98CR Strong Genetic Variation [369]
ELAVL2 OT6EJ8MQ Strong Biomarker [51]
ELK1 OTH9MXD6 Strong Altered Expression [698]
EN2 OT7EZCM2 Strong Biomarker [699]
ENO2 OTRODL0T Strong Biomarker [700]
ERCC2 OT1C8HQ4 Strong Biomarker [701]
ESCO1 OTZ9P12A Strong Biomarker [702]
ETFA OTXX61VZ Strong Biomarker [703]
ETV4 OT8C98UZ Strong Altered Expression [704]
EXO1 OTI87RS5 Strong Biomarker [705]
FAM107A OTBG61YZ Strong Biomarker [706]
FANCD2 OTVEB5LF Strong Biomarker [707]
FBLN1 OT5MHHOP Strong Altered Expression [708]
FBLN5 OTLVNZ8U Strong Biomarker [709]
FBXW4 OTEGSZOX Strong Biomarker [587]
FBXW8 OTJG15EO Strong Biomarker [97]
FERMT1 OT626PBA Strong Altered Expression [710]
FERMT2 OTZNPWWX Strong Altered Expression [711]
FEZ1 OTWCXPRE Strong Biomarker [712]
FEZF2 OTU4TXIW Strong Biomarker [713]
FGF13 OTHNNVSG Strong Biomarker [714]
FGF3 OT9PK2SI Strong Biomarker [715]
FGFRL1 OT8HZ3ZL Strong Altered Expression [716]
FLII OT7G9JG6 Strong Altered Expression [704]
FOSB OTW6C05J Strong Altered Expression [717]
FOXA1 OTEBY0TD Strong Posttranslational Modification [718]
FOXA2 OTJOCVOY Strong Biomarker [719]
FOXG1 OTAW57J4 Strong Biomarker [720]
FOXJ1 OT7LLBZ7 Strong Biomarker [721]
FOXO3 OTHXQG4P Strong Biomarker [438]
FOXO4 OT90X9LN Strong Altered Expression [722]
FSD1 OT8P6PT3 Strong Altered Expression [723]
FSD1L OTBQ48RF Strong Altered Expression [723]
FSIP1 OTYLL6GM Strong Altered Expression [724]
FZD4 OTGLZIE0 Strong Biomarker [725]
GADD45A OTDRV63V Strong Altered Expression [726]
GADD45G OT8V1J4M Strong Altered Expression [704]
GAGE1 OT53E50E Strong Altered Expression [727]
GAGE2A OTRAJ80C Strong Altered Expression [727]
GAGE4 OTPB5C0O Strong Altered Expression [727]
GAGE5 OTFI6OVS Strong Altered Expression [727]
GAS1 OTKJXG52 Strong Genetic Variation [728]
GDE1 OTU6FSBF Strong Altered Expression [729]
GDF9 OTNTVKVU Strong Altered Expression [730]
GEMIN2 OT4L6TLL Strong Biomarker [731]
GEMIN4 OTX7402E Strong Genetic Variation [675]
GLS2 OT08MSHL Strong Biomarker [732]
GNB4 OTC1GPHA Strong Genetic Variation [733]
GNL3 OTILGYO4 Strong Biomarker [734]
GOLM1 OTOZSV6O Strong Biomarker [735]
GOLPH3 OTDLGYM3 Strong Biomarker [200]
GORASP1 OTQS91S7 Strong Biomarker [736]
GPAA1 OTWVRR35 Strong Biomarker [737]
GPRC5A OTPOCWR7 Strong Biomarker [738]
GREB1 OTU6ZA26 Strong Altered Expression [739]
GSTK1 OTDNGWAF Strong Biomarker [454]
GSTM2 OTG4WT05 Strong Genetic Variation [515]
GSTM3 OTLA2WJT Strong Genetic Variation [740]
H1-0 OTRLJK4Z Strong Posttranslational Modification [741]
HAS1 OTJIAG1W Strong Altered Expression [742]
HAS2 OTTD3PAL Strong Biomarker [743]
HIC2 OT3VP1D9 Strong Biomarker [744]
HJURP OTWMV16B Strong Biomarker [745]
HLA-DOA OTZE5Q7R Strong Genetic Variation [746]
HLA-DRB4 OTNXIHQU Strong Biomarker [747]
HLA-F OT76CM19 Strong Biomarker [748]
HMGB3 OTCJ2EZY Strong Biomarker [749]
HMMR OT4M0JTZ Strong Biomarker [750]
HNF4G OTTSIHJP Strong Altered Expression [751]
HNRNPD OT5UO1FA Strong Biomarker [752]
HNRNPDL OTB3BFCV Strong Altered Expression [354]
HNRNPF OTSMBXMF Strong Biomarker [753]
HNRNPK OTNPRM8U Strong Biomarker [754]
HNRNPL OT0DJX74 Strong Altered Expression [755]
HOXA1 OTMSOJ7D Strong Altered Expression [756]
HOXA9 OTKNK5H0 Strong Posttranslational Modification [757]
HOXB5 OTU74TB8 Strong Biomarker [758]
HOXC9 OT60K4M0 Strong Biomarker [759]
HOXD10 OT0NOWU2 Strong Biomarker [760]
HSPA14 OTZCA5LK Strong Genetic Variation [761]
HSPA2 OTSDET7B Strong Biomarker [762]
HSPB2 OTS01646 Strong Altered Expression [227]
HTN3 OTEUXA81 Strong Biomarker [484]
HTRA3 OTXJ0H4X Strong Biomarker [763]
HYAL1 OT2SJN0X Strong Biomarker [598]
IBSP OT29944Y Strong Biomarker [764]
ID4 OTPMJ39I Strong Biomarker [765]
IER3 OTZJI5FZ Strong Altered Expression [766]
IFI27 OTI2XGIT Strong Altered Expression [673]
IFNE OTXO5MHZ Strong Altered Expression [682]
IGF2BP1 OT9G360P Strong Altered Expression [236]
IGSF21 OTUFCXBS Strong Biomarker [97]
IL10RA OTOX3D1D Strong Biomarker [767]
IL17B OTS86H50 Strong Biomarker [241]
IL18R1 OT83XMPQ Strong Biomarker [177]
IL6ST OT1N9C70 Strong Altered Expression [768]
ILF3 OTKMZ5K5 Strong Biomarker [769]
ING1 OTEZBRKW Strong Biomarker [770]
ING2 OT6H0EWF Strong Genetic Variation [771]
ING4 OT0VVG4V Strong Altered Expression [772]
ING5 OTRNNSFM Strong Altered Expression [773]
INPP4B OTLROA7G Strong Biomarker [774]
INPP5K OTQFLQKA Strong Altered Expression [775]
INTS2 OT2N5TCK Strong Biomarker [484]
IQGAP1 OTZRWTGA Strong Altered Expression [776]
IQGAP3 OT4RZV2M Strong Biomarker [706]
ITGA3 OTBCH21D Strong Biomarker [777]
ITIH5 OTP46PZM Strong Posttranslational Modification [778]
JARID2 OT14UM8H Strong Altered Expression [779]
KAT7 OTUN98IC Strong Biomarker [780]
KDM2B OTDMCVW7 Strong Biomarker [714]
KDM6A OTZM3MJJ Strong Altered Expression [781]
KIDINS220 OTLBH2MA Strong Genetic Variation [782]
KIF20A OTXOQHE0 Strong Biomarker [783]
KIF22 OTY6X6BL Strong Biomarker [784]
KLF5 OT1ABI9N Strong Altered Expression [785]
KLF8 OTUC5CDB Strong Biomarker [786]
KLHL1 OTAX6SAD Strong Biomarker [787]
KLK13 OT8LOD2U Strong Altered Expression [788]
KMT2B OTMMAZQX Strong Biomarker [789]
KPNA2 OTU7FOE6 Strong Biomarker [790]
KRIT1 OT58AP1I Strong Biomarker [625]
KRT14 OTUVZ1DW Strong Altered Expression [791]
KRT20 OT4RB40L Strong Biomarker [792]
KRT5 OTVGI9HT Strong Altered Expression [793]
KRT7 OTLT3JFN Strong Altered Expression [794]
KRT9 OTA10UCH Strong Biomarker [795]
LAMA2 OTFROQWE Strong Biomarker [97]
LAMTOR2 OTHEDISB Strong Posttranslational Modification [639]
LAPTM5 OT2XI2JG Strong Altered Expression [796]
LARP6 OTUQ9QS9 Strong Biomarker [797]
LCN1 OT8BWXTV Strong Biomarker [798]
LCP2 OT57KE22 Strong Altered Expression [799]
LDHB OT9B1CT3 Strong Biomarker [447]
LETM1 OT8N4MRU Strong Altered Expression [800]
LGALS4 OTKQCG0H Strong Altered Expression [801]
LGALS7 OTMSVI7R Strong Altered Expression [802]
LIG1 OTEEQS43 Strong Genetic Variation [803]
LIG3 OT48SKET Strong Genetic Variation [803]
LIN28B OTVWP0FN Strong Biomarker [804]
LIN9 OTLHW00C Strong Posttranslational Modification [346]
LMX1A OTEEYD5L Strong Posttranslational Modification [805]
LOXL1 OTA0NEJU Strong Biomarker [806]
LOXL4 OT6XY2JL Strong Biomarker [807]
LPXN OTUNV3CK Strong Altered Expression [808]
LRAT OTB7CJKY Strong Biomarker [809]
LRPPRC OTXSK5LP Strong Altered Expression [768]
LUM OTSRC874 Strong Biomarker [810]
MACROH2A1 OTV2DQDD Strong Biomarker [804]
MAD2L1 OTXNGZCG Strong Biomarker [811]
MAGT1 OTQSAV5C Strong Genetic Variation [95]
MAN1B1 OTI780UB Strong Altered Expression [812]
MAP6 OTPUI00F Strong Biomarker [813]
MAPK15 OT8SW0L7 Strong Biomarker [97]
MARCHF8 OTH7PNN2 Strong Biomarker [725]
MARCKSL1 OT13J2FM Strong Altered Expression [814]
MBD2 OTUQPP0R Strong Biomarker [815]
MBD4 OTWR9YXE Strong Biomarker [816]
MCAT OTH07FIW Strong Biomarker [144]
MCM2 OTGGORIQ Strong Biomarker [817]
MCPH1 OTYT3TT5 Strong Biomarker [818]
MCTS1 OT7SAOJP Strong Biomarker [144]
MDC1 OTEUQH4J Strong Altered Expression [819]
MED15 OT0D0JVD Strong Biomarker [820]
MED19 OTT9RT5N Strong Biomarker [821]
MED30 OTM3INJN Strong Biomarker [822]
METTL3 OTSXP1M3 Strong Biomarker [498]
MGAT5 OTU4DD4G Strong Biomarker [823]
MIB1 OT5C404P Strong Altered Expression [824]
MLH3 OT91PPBI Strong Biomarker [816]
MLLT11 OTG5RVHC Strong Biomarker [825]
MLXIP OT30UNI7 Strong Biomarker [725]
MMP23B OT2OR6TS Strong Altered Expression [826]
MMRN1 OT7ZNYHT Strong Altered Expression [827]
MNX1 OTXP9FH1 Strong Altered Expression [828]
MRPL41 OTG5URO4 Strong Genetic Variation [829]
MSH3 OTD3YPVL Strong Biomarker [279]
MT1X OT9AKFVS Strong Altered Expression [295]
MTA2 OTCCYIQJ Strong Biomarker [830]
MTSS1 OT5DTDO2 Strong Biomarker [831]
MTUS1 OTBPALMU Strong Biomarker [832]
MUC5B OTPW6K5C Strong Genetic Variation [833]
MUC7 OTSTMP0X Strong Altered Expression [834]
MXD1 OTS5CTHX Strong Biomarker [268]
MXI1 OTUQ9E0D Strong Biomarker [811]
MYLIP OTL0PFGV Strong Biomarker [725]
NAIP OTLA925F Strong Biomarker [835]
NANOG OTUEY1FM Strong Altered Expression [836]
NBN OT73B5MD Strong Genetic Variation [837]
NCAN OT8OO6ZE Strong Biomarker [97]
NCOA1 OTLIUJQD Strong Biomarker [838]
NDRG2 OT5L6KD7 Strong Altered Expression [298]
NEBL OT2WH1NC Strong Biomarker [839]
NFATC1 OT4TMERS Strong Altered Expression [840]
NKX6-2 OT7FI94W Strong Biomarker [628]
NLRP2 OTJA81JU Strong Genetic Variation [837]
NLRP4 OT864X7M Strong Altered Expression [482]
NME2 OTCYGLHV Strong Biomarker [841]
NMU OTW9X7BQ Strong Altered Expression [842]
NOX1 OTZPJQCC Strong Biomarker [843]
NRSN1 OT1KKXC8 Strong Biomarker [97]
NTNG2 OTTY88DL Strong Biomarker [844]
NUCB2 OTHO6JWN Strong Biomarker [845]
NUDT6 OTCS3NYZ Strong Biomarker [846]
NUMA1 OTTKAVG4 Strong Biomarker [847]
NUPR1 OT4FU8C0 Strong Altered Expression [848]
OBP2A OTBIJ5TI Strong Biomarker [784]
OIP5 OTI5C2DE Strong Altered Expression [705]
OPCML OT93PQ6Y Strong Altered Expression [849]
OPN1LW OTFNUZ7O Strong Biomarker [150]
OTX1 OTRGSGH9 Strong Biomarker [850]
P3H4 OTZPXYSH Strong Altered Expression [851]
PA2G4 OT7IG7HT Strong Altered Expression [852]
PAG1 OTFOJUIQ Strong Biomarker [150]
PAK5 OT32WQGL Strong Altered Expression [853]
PAN2 OTB65N2I Strong Altered Expression [482]
PAX8 OTRPD9MI Strong Biomarker [453]
PBOV1 OT67PERT Strong Altered Expression [854]
PCBP4 OTDLL4NB Strong Biomarker [150]
PCDH10 OT2GIT0E Strong Biomarker [855]
PCDH17 OTRK0M05 Strong Altered Expression [856]
PCDH7 OTP091X8 Strong Biomarker [857]
PCDH8 OTDDOQM2 Strong Biomarker [858]
PDC OT1UUVYY Strong Biomarker [346]
PDCD10 OTCHJTSF Strong Altered Expression [859]
PDCD6 OT2YA5M8 Strong Genetic Variation [860]
PDIA6 OT8YBR17 Strong Biomarker [861]
PDK4 OTCMHMBZ Strong Biomarker [862]
PDLIM2 OTEURRPD Strong Posttranslational Modification [863]
PDRG1 OT8ZMFZE Strong Biomarker [864]
PENK OT8P3HMP Strong Biomarker [628]
PFKFB4 OTQYEXL2 Strong Genetic Variation [865]
PFN1 OTHTGA1H Strong Altered Expression [866]
PGAM1 OTZ5DB06 Strong Biomarker [867]
PGM5 OTEAS7OC Strong Biomarker [868]
PHLPP2 OTXB1OUI Strong Biomarker [869]
PI15 OTPJL6ML Strong Biomarker [663]
PIEZO1 OTBG1FU4 Strong Altered Expression [870]
PIEZO2 OTQ7AT38 Strong Altered Expression [870]
PIK3C3 OTLUM9L7 Strong Biomarker [871]
PIK3R1 OT5BZ1J9 Strong Biomarker [534]
PIWIL2 OT1PXQIF Strong Biomarker [872]
PKP2 OTJOVF68 Strong Altered Expression [873]
PKP3 OTPL1HRB Strong Altered Expression [873]
PLCE1 OTJISZOX Strong Altered Expression [874]
PLCL1 OTJL2C79 Strong Biomarker [875]
PLEKHF1 OT9OL16U Strong Biomarker [876]
PLEKHM2 OT4ZYV73 Strong Altered Expression [775]
PLIN2 OTRXJ9UN Strong Biomarker [877]
PLXNA1 OTN0BING Strong Altered Expression [632]
PMF1 OT8PQPZ1 Strong Posttranslational Modification [878]
POLD1 OTWO4UCJ Strong Genetic Variation [803]
POLI OTBA4DCE Strong Biomarker [879]
POU4F2 OT6SW5H0 Strong Biomarker [880]
POU5F1 OTDHHN7O Strong Altered Expression [881]
PPIG OTZ8BTTM Strong Genetic Variation [882]
PPM1B OTZMH6V3 Strong Biomarker [883]
PPP2CB OT24GMCM Strong Biomarker [884]
PPP3CC OT0AQD93 Strong Genetic Variation [885]
PRDM2 OT8L7CGX Strong Biomarker [97]
PRIMA1 OT9ITT3P Strong Biomarker [886]
PRKAA1 OT7TNF0L Strong Altered Expression [685]
PRKAA2 OTU1KZPV Strong Altered Expression [685]
PRKAB1 OT1OG4QZ Strong Altered Expression [685]
PRKACG OTKOQYF8 Strong Genetic Variation [271]
PRPF31 OTSJ0Z1Y Strong Biomarker [887]
PRRC2C OTBX3MXM Strong Altered Expression [888]
PRSS3 OTN3S5YB Strong Biomarker [889]
PRSS55 OTXXWI5Y Strong Altered Expression [585]
PSG2 OT2EIXAI Strong Altered Expression [138]
PSMB2 OTX0UG5W Strong Biomarker [97]
PSMD1 OTW258OV Strong Biomarker [890]
PSMD12 OTWICA51 Strong Biomarker [320]
PSMD9 OT6Y5CC3 Strong Altered Expression [673]
PTPN12 OT5WA666 Strong Biomarker [617]
PYCARD OT67RON3 Strong Biomarker [381]
RAB11A OTC4FW0J Strong Altered Expression [891]
RAB25 OTW0W6NP Strong Altered Expression [892]
RAB27A OT9SQRWY Strong Biomarker [893]
RAB27B OTPF9D0K Strong Altered Expression [894]
RAB36 OTL30F2P Strong Biomarker [895]
RAB40B OTCA9ZF5 Strong Posttranslational Modification [896]
RALA OT734R7X Strong Altered Expression [897]
RALB OTFH203X Strong Altered Expression [897]
RALGAPA2 OTFFGNPT Strong Biomarker [344]
RALGPS1 OTEQN0MA Strong Biomarker [97]
RALGPS2 OTOYS0SD Strong Biomarker [898]
RAP2B OTD2NDQP Strong Biomarker [899]
RARRES1 OTETUPP5 Strong Biomarker [900]
RASAL2 OTGMMX6W Strong Biomarker [901]
RASSF7 OT0V4EIZ Strong Genetic Variation [902]
RB1 OT9VMY7B Strong Posttranslational Modification [903]
RBBP8 OTRHJ3GI Strong Altered Expression [848]
RBP1 OTRP1MFC Strong Posttranslational Modification [904]
RBX1 OTYA1UIO Strong Biomarker [905]
RFC1 OT3L5PK3 Strong Altered Expression [367]
RHEB OTFLTSEC Strong Altered Expression [906]
RING1 OTCWTAX0 Strong Biomarker [907]
RIT1 OTVNOGOH Strong Biomarker [905]
RMC1 OT7K8MTJ Strong Altered Expression [908]
RNF8 OTRR43PZ Strong Biomarker [909]
RPL10 OTBHOZGC Strong Altered Expression [632]
RPP14 OT4OYFSK Strong Posttranslational Modification [639]
RSPH9 OTRAK1LK Strong Posttranslational Modification [910]
RTKN2 OTV2AXQM Strong Biomarker [911]
RTRAF OTJ6NVMW Strong Biomarker [912]
RUVBL1 OTWV19L7 Strong Biomarker [913]
S100A11 OTI57KDN Strong Altered Expression [914]
S100A16 OT3ERKQI Strong Biomarker [915]
S100A7 OTJFVJRF Strong Altered Expression [916]
SARDH OTQ49Q27 Strong Genetic Variation [375]
SART1 OTHMOGO1 Strong Biomarker [917]
SCAF11 OTX59D0X Strong Biomarker [731]
SCO2 OTJQQDRS Strong Biomarker [52]
SDHB OTRE1M1T Strong Genetic Variation [375]
SDS OT5WTJ2M Strong Genetic Variation [375]
SELENOF OT2JFB3S Strong Genetic Variation [918]
SEMA6A OTDQ7QAW Strong Biomarker [919]
SENP2 OTPQJXIR Strong Altered Expression [920]
SETD6 OTH5APN1 Strong Biomarker [921]
SF3B6 OTPRKS6S Strong Posttranslational Modification [639]
SFN OTLJCZ1U Strong Biomarker [922]
SFRP2 OT8GZ0CA Strong Biomarker [923]
SFRP5 OTLCVVSH Strong Biomarker [923]
SGK2 OTCTVSHF Strong Biomarker [924]
SH3BGRL3 OTKMW34I Strong Altered Expression [925]
SH3BP2 OT90JNBS Strong Biomarker [926]
SHMT1 OTIINA3J Strong Genetic Variation [153]
SIRT7 OT5M4OT4 Strong Biomarker [927]
SKA1 OTDYJ12A Strong Altered Expression [928]
SLC26A8 OTNCW8RJ Strong Altered Expression [445]
SLURP1 OT89YD2E Strong Biomarker [929]
SNAI1 OTDPYAMC Strong Altered Expression [36]
SNRNP70 OTP52YZ3 Strong Genetic Variation [930]
SNW1 OTKWG3PS Strong Biomarker [775]
SOCS6 OT2O5ZBK Strong Biomarker [931]
SOX1 OTVI1RAR Strong Posttranslational Modification [932]
SOX11 OT4LG7LA Strong Biomarker [933]
SOX30 OTGT38E3 Strong Altered Expression [934]
SOX4 OTSS40SS Strong Biomarker [935]
SP3 OTYDQZ1T Strong Altered Expression [936]
SP4 OTWB30IZ Strong Altered Expression [936]
SPAG9 OT45AHMB Strong Altered Expression [937]
SPAM1 OTMPOB4E Strong Biomarker [598]
SPG7 OT8OY9ST Strong Biomarker [128]
SPHKAP OT5RHUYJ Strong Altered Expression [775]
SPINK1 OTSUVAL2 Strong Altered Expression [938]
SPZ1 OTQH8HJ5 Strong Altered Expression [585]
SRA1 OTYOGMTG Strong Biomarker [302]
SRI OT4R3EAC Strong Genetic Variation [939]
SRSF9 OT2STDP4 Strong Altered Expression [940]
ST3GAL1 OTFCO8QX Strong Genetic Variation [941]
ST6GAL1 OT7US3NO Strong Altered Expression [942]
ST6GALNAC1 OT3JQD99 Strong Altered Expression [943]
STAG1 OT564IX4 Strong Altered Expression [944]
STAG2 OTR6X1Q7 Strong Biomarker [945]
STRN OTLOZL5I Strong Biomarker [946]
STRN3 OT44KXPY Strong Biomarker [946]
SUB1 OTK71JYU Strong Posttranslational Modification [639]
SUZ12 OT655XF8 Strong Biomarker [947]
SYCE1L OTXU44F3 Strong Biomarker [787]
SYT1 OTVTPOI6 Strong Biomarker [736]
TBC1D9 OTSSCTB5 Strong Altered Expression [948]
TBL2 OTCIMSK8 Strong Biomarker [949]
TBPL1 OT4I143E Strong Biomarker [389]
TBX2 OTTOT7A9 Strong Posttranslational Modification [950]
TBX3 OTM64N7K Strong Posttranslational Modification [950]
TCF21 OT393IMA Strong Posttranslational Modification [951]
TCIM OTARUXQF Strong Biomarker [952]
TEAD1 OTK6971C Strong Biomarker [953]
TEX19 OTY6MIZ9 Strong Altered Expression [954]
TFDP1 OT6RZ7VT Strong Biomarker [955]
TFPI2 OTZCRWOR Strong Biomarker [953]
TGFBR3 OTQOOUC4 Strong Biomarker [391]
TICAM2 OTK7GIJ5 Strong Altered Expression [673]
TIMP2 OT8S1RRP Strong Biomarker [956]
TIMP3 OTDGQAD1 Strong Genetic Variation [285]
TJP1 OTBDCUPK Strong Biomarker [957]
TLK1 OTICTXI8 Strong Genetic Variation [271]
TLNRD1 OTNOLROI Strong Altered Expression [958]
TLR10 OTQ1KVJO Strong Genetic Variation [959]
TLX3 OTBUHHK3 Strong Biomarker [960]
TM4SF1 OTY0ECQN Strong Biomarker [961]
TMED7 OTONO8E6 Strong Altered Expression [673]
TMEFF2 OT1WZ2QO Strong Biomarker [962]
TMEM129 OTJU5VDZ Strong Genetic Variation [963]
TMEM40 OTSJKKNA Strong Biomarker [964]
TMX1 OTX4FHYQ Strong Biomarker [965]
TNFRSF10C OTVHOL9B Strong Posttranslational Modification [966]
TOP3A OT3CKUI9 Strong Biomarker [967]
TP53I3 OTSCM68G Strong Genetic Variation [829]
TP53INP2 OT0GTBXO Strong Biomarker [968]
TP63 OT0WOOKQ Strong Biomarker [969]
TP73 OT0LUO47 Strong Altered Expression [603]
TPPP OTCFMSUF Strong Biomarker [970]
TRIM13 OTQIUACB Strong Biomarker [128]
TRIM29 OT2DNESG Strong Altered Expression [969]
TRIO OT71X1AK Strong Altered Expression [971]
TRIP13 OTFM3TI9 Strong Biomarker [51]
TSGA10 OTIF1O1T Strong Biomarker [972]
ATAD1 OTJ02XFL Definitive Genetic Variation [345]
BRINP1 OTEUVSCP Definitive Biomarker [628]
CD82 OTH8MC64 Definitive Altered Expression [973]
CIB1 OT4BVCRU Definitive Genetic Variation [974]
CTCF OT8ZB70U Definitive Posttranslational Modification [975]
DAB2IP OTF456VC Definitive Altered Expression [668]
ERCC1 OTNPYQHI Definitive Biomarker [356]
HERPUD1 OT9EROL6 Definitive Biomarker [388]
HPR OTXSC9UB Definitive Biomarker [976]
IFNL2 OT4BMJF7 Definitive Biomarker [241]
LYPD4 OTYNO8BS Definitive Biomarker [977]
LZTS1 OTXXL864 Definitive Biomarker [978]
MCM5 OTAHLB62 Definitive Biomarker [979]
MRPL28 OT4LUTZU Definitive Biomarker [980]
MT1E OTXJKU4Y Definitive Biomarker [981]
NID2 OTHC33FF Definitive Posttranslational Modification [982]
NXT1 OT0VO6AY Definitive Biomarker [980]
RAD23B OT0PGOG3 Definitive Genetic Variation [635]
RHOBTB2 OT2DATFX Definitive Posttranslational Modification [983]
S100A1 OT1F2G4J Definitive Altered Expression [362]
SFRP1 OT0U9G41 Definitive Altered Expression [984]
SFXN1 OTL66767 Definitive Biomarker [985]
SLC12A9 OTR7VRAK Definitive Biomarker [986]
TBP OT6C0S52 Definitive Biomarker [987]
------------------------------------------------------------------------------------
⏷ Show the Full List of 697 DOT(s)

References

1 Cisplatin FDA Label
2 Gemcitabine FDA Label
3 Lenalidomide FDA Label
4 Mitomycin FDA Label
5 Thalidomide FDA Label
6 Prospective Validation of an mRNA-based Urine Test for Surveillance of Patients with Bladder Cancer.Eur Urol. 2019 May;75(5):853-860. doi: 10.1016/j.eururo.2018.11.055. Epub 2018 Dec 12.
7 Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis.Cancer Med. 2019 Jun;8(6):2717-2729. doi: 10.1002/cam4.2152. Epub 2019 Apr 5.
8 CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells.Mol Med Rep. 2019 Mar;19(3):1678-1686. doi: 10.3892/mmr.2018.9791. Epub 2018 Dec 24.
9 CDK4/6 Inhibitor as a Novel Therapeutic Approach for Advanced Bladder Cancer Independently of RB1 Status.Clin Cancer Res. 2019 Jan 1;25(1):390-402. doi: 10.1158/1078-0432.CCR-18-0685. Epub 2018 Sep 21.
10 Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion.J Exp Med. 2019 Nov 4;216(11):2635-2652. doi: 10.1084/jem.20190251. Epub 2019 Sep 10.
11 High-soluble CGA levels are associated with poor survival in bladder cancer.Endocr Connect. 2019 May 1;8(5):625-633. doi: 10.1530/EC-19-0068.
12 Caspase recruitment domain family member 10 regulates carbamoyl phosphate synthase 1 and promotes cancer growth in bladder cancer cells.J Cell Mol Med. 2019 Dec;23(12):8128-8138. doi: 10.1111/jcmm.14683. Epub 2019 Sep 29.
13 Multi-omics Integration Analysis Robustly Predicts High-Grade Patient Survival and Identifies CPT1B Effect on Fatty Acid Metabolism in Bladder Cancer.Clin Cancer Res. 2019 Jun 15;25(12):3689-3701. doi: 10.1158/1078-0432.CCR-18-1515. Epub 2019 Mar 7.
14 Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis.J Urol. 2000 Jul;164(1):209-13.
15 Genoproteomic mining of urothelial cancer suggests {gamma}-glutamyl hydrolase and diazepam-binding inhibitor as putative urinary markers of outcome after chemotherapy.Am J Pathol. 2009 Nov;175(5):1824-30. doi: 10.2353/ajpath.2009.090155. Epub 2009 Oct 8.
16 GPR137 is a promising novel bio-marker for the prognosis of bladder cancer patients.Medicine (Baltimore). 2019 Aug;98(35):e16576. doi: 10.1097/MD.0000000000016576.
17 Activation of type 4 metabotropic glutamate receptor promotes cell apoptosis and inhibits proliferation in bladder cancer.J Cell Physiol. 2019 Mar;234(3):2741-2755. doi: 10.1002/jcp.27089. Epub 2018 Aug 26.
18 Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer.FEBS Open Bio. 2019 Feb 21;9(4):693-706. doi: 10.1002/2211-5463.12600. eCollection 2019 Apr.
19 Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer.J Clin Invest. 2020 Jan 2;130(1):404-421. doi: 10.1172/JCI130892.
20 HtrA1 in human urothelial bladder cancer: a secreted protein and a potential novel biomarker.Int J Cancer. 2013 Dec 1;133(11):2650-61. doi: 10.1002/ijc.28280. Epub 2013 Jul 9.
21 Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers.Carcinogenesis. 2014 Dec;35(12):2698-705. doi: 10.1093/carcin/bgu203. Epub 2014 Sep 19.
22 Immune analysis of expression of IL-17 relative ligands and their receptors in bladder cancer: comparison with polyp and cystitis.BMC Immunol. 2016 Oct 3;17(1):36. doi: 10.1186/s12865-016-0174-8.
23 Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer.Br J Cancer. 2006 May 22;94(10):1465-71. doi: 10.1038/sj.bjc.6603099.
24 N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer.EBioMedicine. 2019 Sep;47:195-207. doi: 10.1016/j.ebiom.2019.07.068. Epub 2019 Aug 10.
25 Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling.BMC Cancer. 2019 Feb 11;19(1):137. doi: 10.1186/s12885-019-5353-6.
26 Large-scale profiling of serum metabolites in African American and European American patients with bladder cancer reveals metabolic pathways associated with patient survival.Cancer. 2019 Mar 15;125(6):921-932. doi: 10.1002/cncr.31890. Epub 2019 Jan 2.
27 Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer.Biomed Pharmacother. 2019 Dec;120:109490. doi: 10.1016/j.biopha.2019.109490. Epub 2019 Sep 28.
28 LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk.Int J Cancer. 2019 Mar 15;144(6):1345-1355. doi: 10.1002/ijc.31757. Epub 2018 Nov 4.
29 Lymphotoxin receptor activation promotes bladder cancer in a nuclear factor-B-dependent manner.Mol Med Rep. 2015 Feb;11(2):783-90. doi: 10.3892/mmr.2014.2826. Epub 2014 Oct 30.
30 Differential expression of S1P receptor subtypes in human bladder transitional cell carcinoma.Clin Transl Oncol. 2019 Sep;21(9):1240-1249. doi: 10.1007/s12094-019-02049-3. Epub 2019 Feb 2.
31 Inhibition of MELK produces potential anti-tumour effects in bladder cancer by inducing G1/S cell cycle arrest via the ATM/CHK2/p53 pathway.J Cell Mol Med. 2020 Jan;24(2):1804-1821. doi: 10.1111/jcmm.14878. Epub 2019 Dec 10.
32 TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer.Br J Cancer. 2019 Mar;120(5):555-564. doi: 10.1038/s41416-019-0397-6. Epub 2019 Feb 15.
33 A retinoid responsive cytokine gene, MK, is preferentially expressed in the proximal tubules of the kidney and human tumor cell lines.Am J Pathol. 1993 Feb;142(2):425-31.
34 Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer.Cancer Sci. 2019 Jan;110(1):458-467. doi: 10.1111/cas.13865. Epub 2018 Dec 10.
35 NFB2 p52 stabilizes rhogdi mRNA by inhibiting AUF1 protein degradation via a miR-145/Sp1/USP8-dependent axis.Mol Carcinog. 2019 May;58(5):777-793. doi: 10.1002/mc.22970. Epub 2019 Jan 29.
36 Upregulation of lncRNA snoRNA host gene 6 regulates NUAK family SnF1-like kinase-1 expression by competitively binding microRNA-125b and interacting with Snail1/2 in bladder cancer.J Cell Biochem. 2019 Jan;120(1):357-367. doi: 10.1002/jcb.27387. Epub 2018 Aug 30.
37 MiR-34b-3p Represses the Multidrug-Chemoresistance of Bladder Cancer Cells by Regulating the CCND2 and P2RY1 Genes.Med Sci Monit. 2019 Feb 19;25:1323-1335. doi: 10.12659/MSM.913746.
38 Canine urothelial carcinoma: genomically aberrant and comparatively relevant.Chromosome Res. 2015 Jun;23(2):311-31. doi: 10.1007/s10577-015-9471-y. Epub 2015 Mar 18.
39 Prohibitin gene is overexpressed but not mutated in rat bladder carcinomas and cell lines.Cancer Lett. 1994 Aug 15;83(1-2):201-7. doi: 10.1016/0304-3835(94)90320-4.
40 Biochemical characterization of a mitomycin C-resistant human bladder cancer cell line.Int J Cancer. 1996 Mar 15;65(6):852-7. doi: 10.1002/(SICI)1097-0215(19960315)65:6<852::AID-IJC24>3.0.CO;2-4.
41 PPAR activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway.BMC Cancer. 2019 Mar 7;19(1):204. doi: 10.1186/s12885-019-5426-6.
42 Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M.Cell Mol Life Sci. 2018 Mar;75(5):939-963. doi: 10.1007/s00018-017-2681-z. Epub 2017 Oct 25.
43 RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia. 2010 Dec;12(12):1003-12.
44 Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes.Sci Adv. 2019 Sep 25;5(9):eaaw6499. doi: 10.1126/sciadv.aaw6499. eCollection 2019 Sep.
45 RSPO3 promotes the aggressiveness of bladder cancer via Wnt/-catenin and Hedgehog signaling pathways.Carcinogenesis. 2019 Apr 29;40(2):360-369. doi: 10.1093/carcin/bgy140.
46 Sphingosine 1 phosphate receptor-1 (S1P1) promotes tumor-associated regulatory T cell expansion: leading to poor survival in bladder cancer.Cell Death Dis. 2019 Jan 18;10(2):50. doi: 10.1038/s41419-018-1298-y.
47 Semaphorin 4D promotes the proliferation and metastasis of bladder cancer by activating the PI3K/AKT pathway.Tumori. 2019 Jun;105(3):231-242. doi: 10.1177/0300891618811280. Epub 2019 Jan 24.
48 Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection.Biochem Biophys Res Commun. 2011 Oct 22;414(2):344-9. doi: 10.1016/j.bbrc.2011.09.073. Epub 2011 Sep 17.
49 Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells: role in arsenic-induced carcinogenesis. Toxicol Sci. 2007 Feb;95(2):321-30.
50 Synthesis, characterization, and biological activity of a triphenylphosphonium-containing imidazolium salt against select bladder cancer cell lines.Eur J Med Chem. 2020 Jan 1;185:111832. doi: 10.1016/j.ejmech.2019.111832. Epub 2019 Oct 31.
51 Four novel biomarkers for bladder cancer identified by weighted gene coexpression network analysis.J Cell Physiol. 2019 Aug;234(10):19073-19087. doi: 10.1002/jcp.28546. Epub 2019 Mar 29.
52 Expression of the fluoropyrimidine-metabolizing enzymes in bladder cancers as measured by the Danenberg tumor profile.Oncol Res. 2009;18(4):153-62. doi: 10.3727/096504009790217371.
53 Therapeutic enhancement of S-1 with CPT-11 through down-regulation of thymidylate synthase in bladder cancer.Cancer Med. 2013 Aug;2(4):488-95. doi: 10.1002/cam4.95. Epub 2013 Jun 10.
54 RNA-Binding Protein ZFP36L1 Suppresses Hypoxia and Cell-Cycle Signaling.Cancer Res. 2020 Jan 15;80(2):219-233. doi: 10.1158/0008-5472.CAN-18-2796. Epub 2019 Sep 24.
55 The clinical significance of PINX1 expression in papillary thyroid carcinoma.Hum Pathol. 2018 Nov;81:176-183. doi: 10.1016/j.humpath.2018.07.004. Epub 2018 Jul 17.
56 ACR Appropriateness Criteria Post-Treatment Surveillance of Bladder Cancer.J Am Coll Radiol. 2019 Nov;16(11S):S417-S427. doi: 10.1016/j.jacr.2019.05.026.
57 Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression.Oncogene. 2020 Oct;39(40):6265-6285. doi: 10.1038/s41388-019-0902-7. Epub 2019 Aug 5.
58 The significance of calprotectin, CD147, APOA4 and DJ-1 in non-invasive detection of urinary bladder carcinoma.Neoplasma. 2019 Nov;66(6):1019-1023. doi: 10.4149/neo_2019_190124N74. Epub 2019 Oct 8.
59 Expression of bone morphogenetic protein-10 (BMP10) in human urothelial cancer of the bladder and its effects on the aggressiveness of bladder cancer cells in vitro.Anticancer Res. 2013 May;33(5):1917-25.
60 The Immune Checkpoint Molecule CD200 Is Associated with Tumor Grading and Metastasis in Bladder Cancer.Anticancer Res. 2018 May;38(5):2749-2754. doi: 10.21873/anticanres.12517.
61 Collaborative response to arsenic-contaminated soil in an Appalachian Kentucky neighborhood.J Toxicol Environ Health A. 2019;82(12):697-701. doi: 10.1080/15287394.2019.1641872. Epub 2019 Jul 15.
62 Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer.Oncol Lett. 2019 Jul;18(1):219-226. doi: 10.3892/ol.2019.10310. Epub 2019 May 3.
63 Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture.Cancer Sci. 2019 Sep;110(9):2806-2821. doi: 10.1111/cas.14118. Epub 2019 Jul 23.
64 Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression.Nat Med. 2019 Jul;25(7):1073-1081. doi: 10.1038/s41591-019-0499-y. Epub 2019 Jul 3.
65 Expression and Functions of Formyl Peptide Receptor 1 in Drug-Resistant Bladder Cancer.Technol Cancer Res Treat. 2018 Jan 1;17:1533034618769413. doi: 10.1177/1533034618769413.
66 BMP9 Promotes the Proliferation and Migration of Bladder Cancer Cells through Up-Regulating lncRNA UCA1.Int J Mol Sci. 2018 Apr 8;19(4):1116. doi: 10.3390/ijms19041116.
67 Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking.J Comput Aided Mol Des. 2019 Sep;33(9):799-815. doi: 10.1007/s10822-019-00226-8. Epub 2019 Oct 19.
68 Downregulation of HDGF inhibits the tumorigenesis of bladder cancer cells by inactivating the PI3K-AKT signaling pathway.Cancer Manag Res. 2019 Aug 22;11:7909-7923. doi: 10.2147/CMAR.S215341. eCollection 2019.
69 Correlation of IL-31 gene polymorphisms with susceptibility and clinical recurrence of bladder cancer.Fam Cancer. 2018 Oct;17(4):577-585. doi: 10.1007/s10689-017-0060-4.
70 MiR-652-3p promotes bladder cancer migration and invasion by targeting KCNN3.Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8806-8812. doi: 10.26355/eurrev_201910_19275.
71 Upregulation of JMJD2A promotes migration and invasion in bladder cancer through regulation of SLUG.Oncol Rep. 2019 Oct;42(4):1431-1440. doi: 10.3892/or.2019.7246. Epub 2019 Jul 23.
72 KIF5A Promotes Bladder Cancer Proliferation In Vitro and In Vivo.Dis Markers. 2019 Jul 3;2019:4824902. doi: 10.1155/2019/4824902. eCollection 2019.
73 DNA damage repair gene mutations and their association with tumor immune regulatory gene expression in muscle invasive bladder cancer subtypes.J Immunother Cancer. 2019 Jun 7;7(1):148. doi: 10.1186/s40425-019-0619-8.
74 Long noncoding RNA NNT-AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA-496 thereby increasing HMGB1 expression.Aging (Albany NY). 2019 Dec 17;11(24):12624-12640. doi: 10.18632/aging.102591. Epub 2019 Dec 17.
75 NAD(P)H:quinone oxidoreductase 1 and nrh:quinone oxidoreductase 2 activity and expression in bladder and ovarian cancer and lower NRH:quinone oxidoreductase 2 activity associated with an NQO2 exon 3 single-nucleotide polymorphism.Clin Cancer Res. 2007 Mar 1;13(5):1584-90. doi: 10.1158/1078-0432.CCR-06-1416.
76 Apigenin Suppresses the IL-1-Induced Expression of the Urokinase-Type Plasminogen Activator Receptor by Inhibiting MAPK-Mediated AP-1 and NF-B Signaling in Human Bladder Cancer T24 Cells.J Agric Food Chem. 2018 Jul 25;66(29):7663-7673. doi: 10.1021/acs.jafc.8b02351. Epub 2018 Jul 9.
77 Aberrantly expressed PLOD1 promotes cancer aggressiveness in bladder cancer: a potential prognostic marker and therapeutic target.Mol Oncol. 2019 Sep;13(9):1898-1912. doi: 10.1002/1878-0261.12532. Epub 2019 Jun 27.
78 Overexpression of exchange protein directly activated by cAMP-1 (EPAC1) attenuates bladder cancer cell migration.Biochem Biophys Res Commun. 2018 Jan 1;495(1):64-70. doi: 10.1016/j.bbrc.2017.10.142. Epub 2017 Oct 28.
79 Specifically blocking the fatty acid synthesis to inhibit the malignant phenotype of bladder cancer.Int J Biol Sci. 2019 Jun 4;15(8):1610-1617. doi: 10.7150/ijbs.32518. eCollection 2019.
80 Validation of survivin and HMGA2 as biomarkers for cisplatin resistance in bladder cancer.Urol Oncol. 2019 Nov;37(11):810.e7-810.e15. doi: 10.1016/j.urolonc.2019.04.015. Epub 2019 Apr 30.
81 USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer.J Exp Clin Cancer Res. 2019 Jun 14;38(1):259. doi: 10.1186/s13046-019-1262-4.
82 Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p.J Biol Chem. 2018 May 4;293(18):6693-6706. doi: 10.1074/jbc.RA118.001689. Epub 2018 Mar 16.
83 Intercellular transfer of P-glycoprotein mediates the formation of stable multi-drug resistance in human bladder cancer BIU-87 cells.Biol Open. 2019 May 1;8(5):bio041889. doi: 10.1242/bio.041889.
84 Long non-coding RNA GHET1 contributes to chemotherapeutic resistance to Gemcitabine in bladder cancer.Cancer Chemother Pharmacol. 2019 Jul;84(1):187-194. doi: 10.1007/s00280-019-03873-8. Epub 2019 May 21.
85 Long noncoding RNA FOXD2-AS1 accelerates the gemcitabine-resistance of bladder cancer by sponging miR-143.Biomed Pharmacother. 2018 Jul;103:415-420. doi: 10.1016/j.biopha.2018.03.138. Epub 2018 Apr 24.
86 Organochlorine and organophosphorus pesticides and bladder cancer: A case-control study.J Cell Biochem. 2019 Sep;120(9):14847-14859. doi: 10.1002/jcb.28746. Epub 2019 Apr 22.
87 Correction to: Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer.Int J Clin Oncol. 2018 Aug;23(4):799. doi: 10.1007/s10147-018-1257-8.
88 Nodal regulates bladder cancer cell migration and invasion via the ALK/Smad signaling pathway.Onco Targets Ther. 2018 Oct 5;11:6589-6597. doi: 10.2147/OTT.S177514. eCollection 2018.
89 Expression and Clinical Significance of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) and a Disintegrin and Metalloproteinase with Thrombospondin Type 1 Motif 1 (ADAMTS1) in Post-Kidney-Transplant Bladder Tumors.Ann Transplant. 2017 Oct 17;22:622-630. doi: 10.12659/aot.904283.
90 Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment.Cancer Res. 2014 Dec 15;74(24):7239-49. doi: 10.1158/0008-5472.CAN-13-3581. Epub 2014 Oct 23.
91 Development of an ELISA to detect the secreted prostate cancer biomarker AGR2 in voided urine.Prostate. 2012 Jun 15;72(9):1023-34. doi: 10.1002/pros.21508. Epub 2011 Nov 9.
92 Association of AKR1C3 Polymorphisms with Bladder Cancer.Urol J. 2016 Apr 16;13(2):2615-21.
93 Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis.Sci Rep. 2018 Feb 16;8(1):3208. doi: 10.1038/s41598-018-21467-x.
94 Expression of lipoxygenase in human bladder carcinoma and growth inhibition by its inhibitors.J Urol. 2003 Nov;170(5):1994-9. doi: 10.1097/01.ju.0000080296.54262.c8.
95 NF-B suppresses apoptosis and promotes bladder cancer cell proliferation by upregulating survivin expression in vitro and in vivo.Sci Rep. 2017 Jan 31;7:40723. doi: 10.1038/srep40723.
96 Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation.Oncotarget. 2016 Jul 12;7(28):43109-43123. doi: 10.18632/oncotarget.10097.
97 Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol. 2015 Jun 15;28(6):1144-55. doi: 10.1021/tx500393y. Epub 2015 Jun 3.
98 Correlation of ANXA1 expression with drug resistance and relapse in bladder cancer.Int J Clin Exp Pathol. 2014 Aug 15;7(9):5538-48. eCollection 2014.
99 A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett. 2012 Apr 5;210(1):100-6. doi: 10.1016/j.toxlet.2012.01.015. Epub 2012 Jan 28.
100 Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gi protein/MAPK/MMP9 intracellular signaling.Oncogene. 2020 Jan;39(3):574-586. doi: 10.1038/s41388-019-0964-6. Epub 2019 Sep 10.
101 Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer.PLoS Pathog. 2014 Oct 30;10(10):e1004485. doi: 10.1371/journal.ppat.1004485. eCollection 2014 Oct.
102 Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells.Oncol Rep. 2017 Nov;38(5):3137-3143. doi: 10.3892/or.2017.5988. Epub 2017 Sep 21.
103 ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer.Mol Med Rep. 2017 Mar;15(3):1143-1148. doi: 10.3892/mmr.2017.6141. Epub 2017 Jan 24.
104 Utility of ATP7B in prediction of response to platinum-based chemotherapy in urothelial bladder cancer.Anticancer Res. 2013 Sep;33(9):3731-7.
105 Increased AURKA promotes cell proliferation and predicts poor prognosis in bladder cancer.BMC Syst Biol. 2018 Dec 14;12(Suppl 7):118. doi: 10.1186/s12918-018-0634-2.
106 Induction of Mitotic Catastrophe via Inhibition of Aurora B by Ionizing Radiation With Additive of Mulberry Water Extract in Human Bladder Cancer Cells.Integr Cancer Ther. 2019 Jan-Dec;18:1534735418808586. doi: 10.1177/1534735418808586. Epub 2018 Nov 15.
107 The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease.PLoS One. 2015 Jul 30;10(7):e0134552. doi: 10.1371/journal.pone.0134552. eCollection 2015.
108 Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area.Genes Chromosomes Cancer. 2015 Jan;54(1):51-62. doi: 10.1002/gcc.22218. Epub 2014 Sep 18.
109 PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis.Int J Biol Sci. 2018 Oct 20;14(13):1883-1891. doi: 10.7150/ijbs.27854. eCollection 2018.
110 Prognostic value and association with epithelial-mesenchymal transition and molecular subtypes of the proteoglycan biglycan in advanced bladder cancer.Urol Oncol. 2019 Aug;37(8):530.e9-530.e18. doi: 10.1016/j.urolonc.2019.05.011. Epub 2019 Jun 5.
111 cIAP-2 block apoptotic events in bladder cancer cells.Anticancer Res. 2003 Jul-Aug;23(4):3311-6.
112 miR-138-5p contributes to cell proliferation and invasion by targeting Survivin in bladder cancer cells.Mol Cancer. 2016 Dec 15;15(1):82. doi: 10.1186/s12943-016-0569-4.
113 Suppression of livin gene expression by siRNA leads to growth inhibition and apoptosis induction in human bladder cancer T24 cells.Biosci Biotechnol Biochem. 2010;74(5):1039-44. doi: 10.1271/bbb.90934. Epub 2010 May 7.
114 Overexpression of the transmembrane protein BST-2 induces Akt and Erk phosphorylation in bladder cancer.Oncol Lett. 2017 Jul;14(1):999-1004. doi: 10.3892/ol.2017.6230. Epub 2017 May 23.
115 Molecular analyses of the mitotic checkpoint components hsMAD2, hBUB1 and hBUB3 in human cancer.Int J Cancer. 2001 Jul 20;95(4):223-7. doi: 10.1002/1097-0215(20010720)95:4<223::aid-ijc1038>3.0.co;2-l.
116 Methylation of tumor suppressor genes in a novel panel predicts clinical outcome in paraffin-embedded bladder tumors.Tumour Biol. 2014 Jun;35(6):5777-86. doi: 10.1007/s13277-014-1767-6. Epub 2014 Feb 28.
117 Potential therapeutic effects of N-butylidenephthalide from Radix Angelica Sinensis (Danggui) in human bladder cancer cells.BMC Complement Altern Med. 2017 Dec 6;17(1):523. doi: 10.1186/s12906-017-2034-3.
118 CCL17-CCR4 axis promotes metastasis via ERK/MMP13 pathway in bladder cancer.J Cell Biochem. 2019 Feb;120(2):1979-1989. doi: 10.1002/jcb.27494. Epub 2018 Sep 19.
119 Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer.FASEB J. 2019 Jan;33(1):1374-1388. doi: 10.1096/fj.201800667R. Epub 2018 Aug 23.
120 Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer.Int J Biol Macromol. 2019 Feb 15;123:322-334. doi: 10.1016/j.ijbiomac.2018.11.032. Epub 2018 Nov 8.
121 Metformin targets a YAP1-TEAD4 complex via AMPK to regulate CCNE1/2 in bladder cancer cells.J Exp Clin Cancer Res. 2019 Aug 27;38(1):376. doi: 10.1186/s13046-019-1346-1.
122 CCR4 Blockade Depletes Regulatory T Cells and Prolongs Survival in a Canine Model of Bladder Cancer.Cancer Immunol Res. 2019 Jul;7(7):1175-1187. doi: 10.1158/2326-6066.CIR-18-0751. Epub 2019 Jun 3.
123 CD163+ macrophages predict a poor prognosis in patients with primary T1 high-grade urothelial carcinoma of the bladder.World J Urol. 2019 Dec;37(12):2721-2726. doi: 10.1007/s00345-018-02618-1. Epub 2019 Mar 13.
124 CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer.Br J Cancer. 2018 Oct;119(8):961-970. doi: 10.1038/s41416-018-0291-7. Epub 2018 Oct 17.
125 Novel blood biomarkers of human urinary bladder cancer.Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3374-80. doi: 10.1158/1078-0432.CCR-05-2081.
126 Targeting immunotherapy for bladder cancer using anti-CD3 B7-H3 bispecific antibody.Cancer Med. 2018 Oct;7(10):5167-5177. doi: 10.1002/cam4.1775. Epub 2018 Sep 25.
127 Synergic effects of cancer stem cells markers, CD44 and embryonic stem cell transcription factor Nanog, on bladder cancer prognosis.Br J Biomed Sci. 2020 Apr;77(2):69-75. doi: 10.1080/09674845.2019.1692761. Epub 2019 Dec 20.
128 Targeting CD46 Enhances Anti-Tumoral Activity of Adenovirus Type 5 for Bladder Cancer.Int J Mol Sci. 2018 Sep 10;19(9):2694. doi: 10.3390/ijms19092694.
129 CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer.Clin Cancer Res. 2019 Jun 15;25(12):3561-3571. doi: 10.1158/1078-0432.CCR-18-3267. Epub 2019 Mar 19.
130 Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells.Oncol Lett. 2018 May;15(5):7631-7638. doi: 10.3892/ol.2018.8309. Epub 2018 Mar 21.
131 A specific microdomain ("glycosynapse 3") controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9.J Biol Chem. 2005 Oct 21;280(42):35545-53. doi: 10.1074/jbc.M505630200. Epub 2005 Aug 15.
132 Identification of key genes associated with bladder cancer using gene expression profiles.Oncol Lett. 2018 Jan;15(1):297-303. doi: 10.3892/ol.2017.7310. Epub 2017 Oct 31.
133 Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers.Sci Rep. 2016 Oct 24;6:35854. doi: 10.1038/srep35854.
134 Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer.Nat Genet. 2016 Apr;48(4):356-8. doi: 10.1038/ng.3503. Epub 2016 Feb 22.
135 Circulating N-cadherin levels are a negative prognostic indicator in patients with multiple myeloma.Br J Haematol. 2013 May;161(4):499-507. doi: 10.1111/bjh.12280. Epub 2013 Feb 26.
136 Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1.Urol Oncol. 2018 Jun;36(6):311.e1-311.e13. doi: 10.1016/j.urolonc.2018.03.001. Epub 2018 Mar 27.
137 Incidence and distribution of UroSEEK gene panel in a multi-institutional cohort of bladder urothelial carcinoma.Mod Pathol. 2019 Oct;32(10):1544-1550. doi: 10.1038/s41379-019-0276-y. Epub 2019 Apr 25.
138 Influence of spatial configuration on the expression of carcinoembryonic antigen and mucin antigens in human bladder cancer.Int J Cancer. 1997 Jun 11;71(6):986-92. doi: 10.1002/(sici)1097-0215(19970611)71:6<986::aid-ijc14>3.0.co;2-4.
139 Overexpression of human chorionic gonadotropin beta genes 3, 5 and 8 in tumor tissue and urinary cells of bladder cancer patients.Tumour Biol. 2007;28(1):52-6. doi: 10.1159/000097703. Epub 2006 Dec 1.
140 Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine.J Exp Clin Cancer Res. 2017 Jan 3;36(1):1. doi: 10.1186/s13046-016-0473-1.
141 Paeonia lactiflora Pall inhibits bladder cancer growth involving phosphorylation of Chk2 in vitro and in vivo.J Ethnopharmacol. 2011 Apr 26;135(1):162-72. doi: 10.1016/j.jep.2011.03.011. Epub 2011 Mar 17.
142 Clostridium perfringens enterotoxin as a potential drug for intravesical treatment of bladder cancer.Biochem Biophys Res Commun. 2016 Sep 16;478(2):887-92. doi: 10.1016/j.bbrc.2016.08.046. Epub 2016 Aug 9.
143 The role of Clusterin in cancer metastasis.Cancer Manag Res. 2019 Mar 27;11:2405-2414. doi: 10.2147/CMAR.S196273. eCollection 2019.
144 MCT1 regulates aggressive and metabolic phenotypes in bladder cancer.J Cancer. 2018 Jun 15;9(14):2492-2501. doi: 10.7150/jca.25257. eCollection 2018.
145 Multiple recurrences and risk of disease progression in patients with primary low-grade (TaG1) non-muscle-invasive bladder cancer and with low and intermediate EORTC-risk score.PLoS One. 2019 Feb 27;14(2):e0211721. doi: 10.1371/journal.pone.0211721. eCollection 2019.
146 Gene expression profile and enrichment pathways in different stages of bladder cancer.Genet Mol Res. 2013 May 6;12(2):1479-89. doi: 10.4238/2013.May.6.1.
147 Collagen Type VI Alpha 3 Chain Promotes Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Transforming Growth Factor (TGF-)/Smad Pathway.Med Sci Monit. 2018 Aug 1;24:5346-5354. doi: 10.12659/MSM.909811.
148 Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder Cancer Patients from Healthy Controls.Yonsei Med J. 2016 Jul;57(4):865-71. doi: 10.3349/ymj.2016.57.4.865.
149 Circular RNA hsa_circ_0075828 promotes bladder cancer cell proliferation through activation of CREB1.BMB Rep. 2020 Feb;53(2):82-87. doi: 10.5483/BMBRep.2020.53.2.059.
150 A CRISPR Interference of CBP and p300 Selectively Induced Synthetic Lethality in Bladder Cancer Cells In Vitro.Int J Biol Sci. 2019 May 11;15(6):1276-1286. doi: 10.7150/ijbs.32332. eCollection 2019.
151 Exosomes containing ErbB2/CRK induce vascular growth in premetastatic niches and promote metastasis of bladder cancer.Cancer Sci. 2019 Jul;110(7):2119-2132. doi: 10.1111/cas.14080. Epub 2019 Jun 24.
152 Adverse events of MVAC chemotherapy in patients with advanced urothelial cancer of the bladder.Hinyokika Kiyo. 2007 Apr;53(4):213-9.
153 Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer.Int J Cancer. 2007 Jun 1;120(11):2452-8. doi: 10.1002/ijc.22565.
154 HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease.J Proteome Res. 2013 Jul 5;12(7):3519-28. doi: 10.1021/pr4004135. Epub 2013 Jun 18.
155 Cathepsin S inhibition changes regulatory T-cell activity in regulating bladder cancer and immune cell proliferation and apoptosis.Mol Immunol. 2017 Feb;82:66-74. doi: 10.1016/j.molimm.2016.12.018. Epub 2016 Dec 26.
156 A quantitative proteomic analysis uncovers the relevance of CUL3 in bladder cancer aggressiveness.PLoS One. 2013;8(1):e53328. doi: 10.1371/journal.pone.0053328. Epub 2013 Jan 8.
157 Epithelial-mesenchymal transition induced by GRO--CXCR2 promotes bladder cancer recurrence after intravesical chemotherapy.Oncotarget. 2017 Jul 11;8(28):45274-45285. doi: 10.18632/oncotarget.16786.
158 Investigating Colorimetric Protein Array Assay Schemes for Detection of Recurrence of Bladder Cancer.Biosensors (Basel). 2018 Jan 24;8(1):10. doi: 10.3390/bios8010010.
159 CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study.Genet Mol Res. 2016 Apr 26;15(2). doi: 10.4238/gmr.15026298.
160 Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect. 2010 Nov;118(11):1545-50. doi: 10.1289/ehp.1002206.
161 Association of NR1I2, CYP3A5 and ABCB1 genetic polymorphisms with variability of temsirolimus pharmacokinetics and toxicity in patients with metastatic bladder cancer. Cancer Chemother Pharmacol. 2017 Sep;80(3):653-659.
162 High frequency loss of heterozygosity in the region of the DBH locus in bladder cancer.Chin Med J (Engl). 2000 Feb;113(2):117-9.
163 Deoxycytidine kinase expression underpins response to gemcitabine in bladder cancer.Clin Cancer Res. 2014 Nov 1;20(21):5435-45. doi: 10.1158/1078-0432.CCR-14-0542. Epub 2014 Sep 15.
164 Increased expression of DCLK1, a novel putative CSC maker, is associated with tumor aggressiveness and worse disease-specific survival in patients with bladder carcinomas.Exp Mol Pathol. 2019 Jun;108:164-172. doi: 10.1016/j.yexmp.2019.04.015. Epub 2019 Apr 25.
165 The identification of new biomarkers for bladder cancer: A study based on TCGA and GEO datasets.J Cell Physiol. 2019 Sep;234(9):15607-15618. doi: 10.1002/jcp.28208. Epub 2019 Feb 18.
166 Discoidin domain receptor 1 activity drives an aggressive phenotype in bladder cancer.Am J Transl Res. 2017 May 15;9(5):2500-2507. eCollection 2017.
167 MEK inhibition enhances efficacy of bacillus Calmette-Gurin on bladder cancer cells by reducing release of Toll-like receptor 2-activated antimicrobial peptides.Oncotarget. 2017 May 26;8(32):53168-53179. doi: 10.18632/oncotarget.18230. eCollection 2017 Aug 8.
168 Decreased plasma DEK Oncogene Levels Correlate with p16-Negative Disease and Advanced Tumor Stage in a Case-Control Study of Patients with Head and Neck Squamous Cell Carcinoma.Transl Oncol. 2018 Feb;11(1):168-174. doi: 10.1016/j.tranon.2017.12.001. Epub 2017 Dec 28.
169 Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4(+) T cells expressing converged T-cell receptor genes in vitro.Oncoimmunology. 2018 Jan 5;7(4):e1415687. doi: 10.1080/2162402X.2017.1415687. eCollection 2018.
170 Novel fusion transcripts in bladder cancer identified by RNA-seq.Cancer Lett. 2016 May 1;374(2):224-8. doi: 10.1016/j.canlet.2016.02.010. Epub 2016 Feb 16.
171 DHCR24 predicts poor clinicopathological features of patients with bladder cancer: A STROBE-compliant study.Medicine (Baltimore). 2018 Sep;97(39):e11830. doi: 10.1097/MD.0000000000011830.
172 MIR-300 in the imprinted DLK1-DIO3 domain suppresses the migration of bladder cancer by regulating the SP1/MMP9 pathway.Cell Cycle. 2018;17(24):2790-2801. doi: 10.1080/15384101.2018.1557490. Epub 2018 Dec 18.
173 Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer.Clin Cancer Res. 2006 Aug 15;12(16):4836-44. doi: 10.1158/1078-0432.CCR-06-0285.
174 miR-4324-RACGAP1-STAT3-ESR1 feedback loop inhibits proliferation and metastasis of bladder cancer.Int J Cancer. 2019 Jun 15;144(12):3043-3055. doi: 10.1002/ijc.32036. Epub 2019 Jan 12.
175 XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion.Oncogenesis. 2019 Dec 6;8(12):71. doi: 10.1038/s41389-019-0181-8.
176 MiR-194-5p inhibits cell migration and invasion in bladder cancer by targeting E2F3.J BUON. 2018 Sep-Oct;23(5):1492-1499.
177 Exploration of the pathways and interaction network involved in bladder cancer cell line with knockdown of Opa interacting protein 5.Pathol Res Pract. 2017 Sep;213(9):1059-1066. doi: 10.1016/j.prp.2017.07.029. Epub 2017 Aug 1.
178 A novel functional polymorphism C1797G in the MDM2 promoter is associated with risk of bladder cancer in a Chinese population.Clin Cancer Res. 2008 Jun 1;14(11):3633-40. doi: 10.1158/1078-0432.CCR-07-5155.
179 The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB.Arch Med Sci. 2019 Sep;15(5):1154-1162. doi: 10.5114/aoms.2018.78743. Epub 2018 Oct 3.
180 Combination of Erlotinib and Naproxen Employing Pulsatile or Intermittent Dosing Profoundly Inhibits Urinary Bladder Cancers.Cancer Prev Res (Phila). 2020 Mar;13(3):273-282. doi: 10.1158/1940-6207.CAPR-19-0339. Epub 2019 Dec 9.
181 Differential mTOR pathway profiles in bladder cancer cell line subtypes to predict sensitivity to mTOR inhibition.Urol Oncol. 2017 Oct;35(10):593-599. doi: 10.1016/j.urolonc.2017.03.025. Epub 2017 Apr 18.
182 N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation.Cancer Sci. 2014 Feb;105(2):219-27. doi: 10.1111/cas.12328. Epub 2014 Jan 7.
183 Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1).Molecules. 2016 Jun 28;21(7):849. doi: 10.3390/molecules21070849.
184 p300 mediates cellular resistance to doxorubicin in bladder cancer.Mol Med Rep. 2012 Jan;5(1):173-6. doi: 10.3892/mmr.2011.593. Epub 2011 Sep 20.
185 Exploring the roles of urinary HAI-1, EpCAM & EGFR in bladder cancer prognosis & risk stratification.Oncotarget. 2018 May 18;9(38):25244-25253. doi: 10.18632/oncotarget.25397. eCollection 2018 May 18.
186 The differential expression of EphB2 and EphB4 receptor kinases in normal bladder and in transitional cell carcinoma of the bladder.PLoS One. 2014 Aug 22;9(8):e105326. doi: 10.1371/journal.pone.0105326. eCollection 2014.
187 Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration.Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11701-E11710. doi: 10.1073/pnas.1804506115. Epub 2018 Nov 21.
188 Soluble HER3 predicts survival in bladder cancer patients.Oncol Lett. 2018 Feb;15(2):1783-1788. doi: 10.3892/ol.2017.7470. Epub 2017 Nov 22.
189 Sex steroid hormone receptors in bladder cancer: Usefulness in differential diagnosis and implications in histogenesis of bladder cancer.Urol Oncol. 2019 Jun;37(6):353.e9-353.e15. doi: 10.1016/j.urolonc.2019.01.023. Epub 2019 Feb 6.
190 Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ER/Bcl-2 signalling.Cell Death Dis. 2019 May 10;10(5):375. doi: 10.1038/s41419-019-1581-6.
191 The enhanced expression of estrogen-related receptor in human bladder cancer tissues and the effects of estrogen-related receptor knockdown on bladder cancer cells.J Cell Biochem. 2019 Aug;120(8):13841-13852. doi: 10.1002/jcb.28657. Epub 2019 Apr 11.
192 ATG7 Overexpression Is Crucial for Tumorigenic Growth of Bladder Cancer InVitro and InVivo by Targeting the ETS2/miRNA196b/FOXO1/p27 Axis.Mol Ther Nucleic Acids. 2017 Jun 16;7:299-313. doi: 10.1016/j.omtn.2017.04.012. Epub 2017 Apr 14.
193 Down-regulation of A-FABP predicts non-muscle invasive bladder cancer progression: investigation with a long term clinical follow-up.BMC Cancer. 2018 Dec 10;18(1):1239. doi: 10.1186/s12885-018-5137-4.
194 Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy.Nat Genet. 2013 Dec;45(12):1464-9. doi: 10.1038/ng.2799. Epub 2013 Oct 13.
195 Disruption of the FA/BRCA pathway in bladder cancer.Cytogenet Genome Res. 2007;118(2-4):166-76. doi: 10.1159/000108297.
196 Emphasis of FAS/FASL gene polymorphism in patients with non-muscle invasive bladder cancer.Ir J Med Sci. 2018 Nov;187(4):1115-1119. doi: 10.1007/s11845-018-1764-7. Epub 2018 Feb 16.
197 Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis.J Cell Physiol. 2019 Mar;234(3):3088-3104. doi: 10.1002/jcp.27129. Epub 2018 Sep 17.
198 CpG hypermethylation of human four-and-a-half LIM domains 1 contributes to migration and invasion activity of human bladder cancer.Int J Mol Med. 2010 Aug;26(2):241-7. doi: 10.3892/ijmm_00000458.
199 Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL.Oncogene. 2012 Mar 22;31(12):1493-503. doi: 10.1038/onc.2011.336. Epub 2011 Aug 8.
200 MiR-1/GOLPH3/Foxo1 Signaling Pathway Regulates Proliferation of Bladder Cancer.Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819886897. doi: 10.1177/1533033819886897.
201 Short hairpin RNA targeting FOXQ1 inhibits invasion and metastasis via the reversal of epithelial-mesenchymal transition in bladder cancer.Int J Oncol. 2013 Apr;42(4):1271-8. doi: 10.3892/ijo.2013.1807. Epub 2013 Feb 5.
202 Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-1 in bladder cancer cells.J Exp Clin Cancer Res. 2019 Mar 1;38(1):111. doi: 10.1186/s13046-019-1102-6.
203 KLF5 promotes cell migration by up-regulating FYN in bladder cancer cells.FEBS Lett. 2016 Feb;590(3):408-18. doi: 10.1002/1873-3468.12069. Epub 2016 Feb 1.
204 Analysis of bladder cancer subtypes in neurogenic bladder tumors.Can J Urol. 2018 Feb;25(1):9161-9167.
205 Nanoscale bubble delivered YCD-TK/Cx26 gene therapeutic system suppresses tumor growth by inducing necrosis of tumor tissues in mouse Xenograft bladder cancer models.Eur Rev Med Pharmacol Sci. 2019 Sep;23(17):7338-7349. doi: 10.26355/eurrev_201909_18839.
206 Inhibition of GLI2 with antisense-oligonucleotides: A potential therapy for the treatment of bladder cancer.J Cell Physiol. 2019 Nov;234(11):20634-20647. doi: 10.1002/jcp.28669. Epub 2019 Apr 22.
207 TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer.J Cell Biochem. 2018 Feb;119(2):1791-1803. doi: 10.1002/jcb.26340. Epub 2017 Sep 11.
208 Gonadotropin-releasing hormone (GnRH) and GnRH receptor in bladder cancer epithelia and GnRH effect on bladder cancer cell proliferation.Urol Int. 2008;80(4):431-8. doi: 10.1159/000132703. Epub 2008 Jun 27.
209 Roles of ER and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen.Biomed Res Int. 2015;2015:251780. doi: 10.1155/2015/251780. Epub 2015 May 18.
210 Knocking down glycoprotein nonmetastatic melanoma protein B suppresses the proliferation, migration, and invasion in bladder cancer cells.Tumour Biol. 2017 Apr;39(4):1010428317699119. doi: 10.1177/1010428317699119.
211 G Protein-Coupled Receptor 87 (GPR87) Promotes Cell Proliferation in Human Bladder Cancer Cells.Int J Mol Sci. 2015 Oct 14;16(10):24319-31. doi: 10.3390/ijms161024319.
212 ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton.Cancer Res. 2013 Jun 15;73(12):3625-37. doi: 10.1158/0008-5472.CAN-12-3879. Epub 2013 Mar 27.
213 GSTP1 and GSTO1 single nucleotide polymorphisms and the response of bladder cancer patients to intravesical chemotherapy.Sci Rep. 2015 Sep 10;5:14000. doi: 10.1038/srep14000.
214 Sugar industry sponsorship of germ-free rodent studies linking sucrose to hyperlipidemia and cancer: An historical analysis of internal documents.PLoS Biol. 2017 Nov 21;15(11):e2003460. doi: 10.1371/journal.pbio.2003460. eCollection 2017 Nov.
215 Transitional cell carcinoma of the bladder: failure to demonstrate human papillomavirus deoxyribonucleic acid by in situ hybridization and polymerase chain reaction.J Urol. 1994 Nov;152(5 Pt 1):1429-33. doi: 10.1016/s0022-5347(17)32437-0.
216 Characterization of Histone Deacetylase Expression Within In Vitro and In Vivo Bladder Cancer Model Systems.Int J Mol Sci. 2019 May 27;20(10):2599. doi: 10.3390/ijms20102599.
217 Suppression of FGFR3- and MYC-dependent oncogenesis by tubacin: association with HDAC6-dependent and independent activities.Oncotarget. 2017 Dec 1;9(3):3172-3187. doi: 10.18632/oncotarget.22816. eCollection 2018 Jan 9.
218 Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment.J Exp Clin Cancer Res. 2014 Jul 10;33(1):59. doi: 10.1186/s13046-014-0059-8.
219 Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling.J Cell Biochem. 2014 Oct;115(10):1762-7. doi: 10.1002/jcb.24842.
220 Dysregulated expression of homebox gene HOXA13 is correlated with the poor prognosis in bladder cancer.Wien Klin Wochenschr. 2017 Jun;129(11-12):391-397. doi: 10.1007/s00508-016-1108-4. Epub 2016 Nov 9.
221 The HOXB13 G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies.Cancer Epidemiol Biomarkers Prev. 2015 Sep;24(9):1366-72. doi: 10.1158/1055-9965.EPI-15-0247. Epub 2015 Jun 24.
222 Association of Glutathione S-transferase gene polymorphism with bladder Cancer susceptibility.BMC Cancer. 2018 Nov 12;18(1):1088. doi: 10.1186/s12885-018-5014-1.
223 Berberine inhibits the migration and invasion of T24 bladder cancer cells via reducing the expression of heparanase.Tumour Biol. 2013 Feb;34(1):215-21. doi: 10.1007/s13277-012-0531-z. Epub 2012 Oct 12.
224 HRAS as a potential therapeutic target of salirasib RAS inhibitor in bladder cancer. Int J Oncol. 2018 Aug;53(2):725-736.
225 Integrative genomic analyses of the histamine H1 receptor and its role in cancer prediction.Int J Mol Med. 2014 Apr;33(4):1019-26. doi: 10.3892/ijmm.2014.1649. Epub 2014 Feb 10.
226 Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity.Oncotarget. 2019 Oct 8;10(56):5824-5834. doi: 10.18632/oncotarget.27217. eCollection 2019 Oct 8.
227 Clinical, prognostic, and therapeutic significance of heat shock protein 27 in bladder cancer.Oncotarget. 2018 Jan 8;9(8):7961-7974. doi: 10.18632/oncotarget.24091. eCollection 2018 Jan 30.
228 Systematic verification of bladder cancer-associated tissue protein biomarker candidates in clinical urine specimens.Oncotarget. 2018 Jul 20;9(56):30731-30747. doi: 10.18632/oncotarget.24578. eCollection 2018 Jul 20.
229 Overexpression of Tat-interacting protein 30 inhibits the proliferation, migration, invasion and promotes apoptosis in bladder cancer cells.J Cancer Res Ther. 2018 Sep;14(Supplement):S713-S718. doi: 10.4103/0973-1482.206869.
230 Significance of Id-1 up-regulation and its association with EGFR in bladder cancer cell invasion.Int J Oncol. 2006 Apr;28(4):847-54.
231 ENERGIZE: a Phase III study of neoadjuvant chemotherapy alone or with nivolumab with/without linrodostat mesylate for muscle-invasive bladder cancer.Future Oncol. 2020 Jan;16(2):4359-4368. doi: 10.2217/fon-2019-0611. Epub 2019 Dec 11.
232 Antitumor effects of human interferon-alpha 2b secreted by recombinant bacillus Calmette-Gurin vaccine on bladder cancer cells.J Zhejiang Univ Sci B. 2012 May;13(5):335-41. doi: 10.1631/jzus.B1100366.
233 Down-regulation of type I interferon receptor sensitizes bladder cancer cells to vesicular stomatitis virus-induced cell death.Int J Cancer. 2010 Aug 15;127(4):830-8. doi: 10.1002/ijc.25088.
234 Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-beta gene therapy results partially from various antiangiogenic effects including endothelial cell apoptosis.Clin Cancer Res. 2002 Apr;8(4):1258-70.
235 Loss of IGF2R indicates a poor prognosis and promotes cell proliferation and tumorigenesis in bladder cancer via AKT signaling pathway.Neoplasma. 2020 Jan;67(1):129-136. doi: 10.4149/neo_2019_190206N108. Epub 2019 Dec 17.
236 IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer.BMC Cancer. 2017 Sep 7;17(1):636. doi: 10.1186/s12885-017-3618-5.
237 Inhibition of IGFBP-2 improves the sensitivity of bladder cancer cells to cisplatin via upregulating the expression of maspin.Int J Mol Med. 2015 Aug;36(2):595-601. doi: 10.3892/ijmm.2015.2250. Epub 2015 Jun 17.
238 The association between bladder cancer and a single nucleotide polymorphism (rs2854744) in the insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) gene.Arch Toxicol. 2011 Oct;85(10):1209-18. doi: 10.1007/s00204-011-0671-8. Epub 2011 Feb 24.
239 Effectiveness of two different dose administration regimens of an IL-15 superagonist complex (ALT-803) in an orthotopic bladder cancer mouse model.J Transl Med. 2019 Jan 17;17(1):29. doi: 10.1186/s12967-019-1778-6.
240 Association of 3 Common Polymorphisms of IL-27 Gene with Susceptibility to Cancer in Chinese: Evidence From an Updated Meta-Analysis of 27 Studies.Med Sci Monit. 2015 Aug 24;21:2505-13. doi: 10.12659/MSM.895032.
241 Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of IL-5, IL-20, and IL-28A.PLoS One. 2012;7(9):e40267. doi: 10.1371/journal.pone.0040267. Epub 2012 Sep 4.
242 NLS-Cholic Acid Conjugation to IL-5R-Specific Antibody Improves Cellular Accumulation and In Vivo Tumor-Targeting Properties in a Bladder Cancer Model.Bioconjug Chem. 2018 Apr 18;29(4):1352-1363. doi: 10.1021/acs.bioconjchem.8b00077. Epub 2018 Mar 1.
243 Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression.Mol Cancer. 2018 Jan 31;17(1):19. doi: 10.1186/s12943-018-0771-7.
244 MicroRNA-328-3p inhibits the tumorigenesis of bladder cancer through targeting ITGA5 and inactivating PI3K/AKT pathway.Eur Rev Med Pharmacol Sci. 2019 Jun;23(12):5139-5148. doi: 10.26355/eurrev_201906_18178.
245 The role of LFA-1 in the lysis of bladder cancer cells by bacillus Calmette-Gurin and interleukin 2-activated killer cells.Urol Res. 2002 Sep;30(4):233-9. doi: 10.1007/s00240-002-0268-z. Epub 2002 Jul 5.
246 Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer.Urology. 2002 Sep;60(3):531-6. doi: 10.1016/s0090-4295(02)01748-x.
247 Inositol 1,4,5-trisphosphate (IP3) receptor type1 (IP3R1) modulates the acquisition of cisplatin resistance in bladder cancer cell lines.Oncogene. 2005 Feb 17;24(8):1396-402. doi: 10.1038/sj.onc.1208313.
248 Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential.Br J Cancer. 2005 Jun 20;92(12):2153-9. doi: 10.1038/sj.bjc.6602651.
249 The RING domain in the anti-apoptotic protein XIAP stabilizes c-Myc protein and preserves anchorage-independent growth of bladder cancer cells.J Biol Chem. 2019 Apr 12;294(15):5935-5944. doi: 10.1074/jbc.RA118.005621. Epub 2019 Feb 28.
250 Connexin 26 is down-regulated by KDM5B in the progression of bladder cancer.Int J Mol Sci. 2013 Apr 11;14(4):7866-79. doi: 10.3390/ijms14047866.
251 Different expression patterns of histone H3K27 demethylases in renal cell carcinoma and bladder cancer.Cancer Biomark. 2017;18(2):125-131. doi: 10.3233/CBM-160003.
252 KIF20B promotes the progression of clear cell renal cell carcinoma by stimulating cell proliferation.J Cell Physiol. 2019 Sep;234(9):16517-16525. doi: 10.1002/jcp.28322. Epub 2019 Feb 25.
253 Upregulated UHRF1 promotes bladder cancer cell invasion by epigenetic silencing of KiSS1.PLoS One. 2014 Oct 1;9(10):e104252. doi: 10.1371/journal.pone.0104252. eCollection 2014.
254 MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells.Oncotarget. 2017 May 16;8(20):33064-33077. doi: 10.18632/oncotarget.16524.
255 Association of KLK5 overexpression with invasiveness of urinary bladder carcinoma cells.Cancer Sci. 2007 Jul;98(7):1078-86. doi: 10.1111/j.1349-7006.2007.00495.x. Epub 2007 Apr 24.
256 Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing.Oncotarget. 2016 Jan 19;7(3):2629-45. doi: 10.18632/oncotarget.6380.
257 Carcinogenic role of K-Ras-ERK1/2 signaling in bladder cancer via inhibition of H1.2 phosphorylation at T146.J Cell Physiol. 2019 Nov;234(11):21135-21144. doi: 10.1002/jcp.28716. Epub 2019 Apr 29.
258 Rapid and quantitative detection of urinary Cyfra21-1 using fluorescent nanosphere-based immunochromatographic test strip for diagnosis and prognostic monitoring of bladder cancer.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):4266-4272. doi: 10.1080/21691401.2019.1687491.
259 Detection of urinary survivin using a magnetic particles-based chemiluminescence immunoassay for the preliminary diagnosis of bladder cancer and renal cell carcinoma combined with LAPTM4B.Oncol Lett. 2018 May;15(5):7923-7933. doi: 10.3892/ol.2018.8317. Epub 2018 Mar 22.
260 The role of LIM and SH3 protein-1 in bladder cancer metastasis. Oncol Lett. 2017 Oct;14(4):4829-4834.
261 Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA.Am J Transl Res. 2019 Nov 15;11(11):6838-6849. eCollection 2019.
262 The Lin28/let-7a/c-Myc pathway plays a role in non-muscle invasive bladder cancer.Cell Tissue Res. 2013 Nov;354(2):533-41. doi: 10.1007/s00441-013-1715-6. Epub 2013 Sep 15.
263 The origins of bladder cancer.Lab Invest. 2008 Jul;88(7):686-93. doi: 10.1038/labinvest.2008.48. Epub 2008 May 12.
264 RETRACTED: lncRNA PEG10 promotes cell survival, invasion and migration by sponging miR-134 in human bladder cancer.Biomed Pharmacother. 2019 Jun;114:108814. doi: 10.1016/j.biopha.2019.108814. Epub 2019 Apr 4.
265 The IL-1RN and IL-4 gene polymorphisms are potential genetic markers of susceptibility to bladder cancer: a case-control study.World J Urol. 2015 Mar;33(3):389-95. doi: 10.1007/s00345-014-1323-4. Epub 2014 May 22.
266 Up-regulation of BLT2 is critical for the survival of bladder cancer cells.Exp Mol Med. 2011 Mar 31;43(3):129-37. doi: 10.3858/emm.2011.43.3.014.
267 LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling.Br J Cancer. 2011 Jan 18;104(2):376-86. doi: 10.1038/sj.bjc.6605990. Epub 2010 Nov 9.
268 Mad1 suppresses bladder cancer cell proliferation by inhibiting human telomerase reverse transcriptase transcription and telomerase activity.Urology. 2006 Jun;67(6):1335-40. doi: 10.1016/j.urology.2005.12.029.
269 Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide.Clin Cancer Res. 2001 Jan;7(1):23-31.
270 MEK1 and MEK2 differentially regulate human insulin- and insulin glargine-induced human bladder cancer T24 cell proliferation.Chin Med J (Engl). 2012 Dec;125(23):4197-201.
271 Mutations in FGFR3 and PIK3CA, singly or combined with RAS and AKT1, are associated with AKT but not with MAPK pathway activation in urothelial bladder cancer.Hum Pathol. 2012 Oct;43(10):1573-82. doi: 10.1016/j.humpath.2011.10.026. Epub 2012 Mar 12.
272 Silencing TAK1 alters gene expression signatures in bladder cancer cells.Oncol Lett. 2017 May;13(5):2975-2981. doi: 10.3892/ol.2017.5819. Epub 2017 Mar 7.
273 Inhibition of TPL2 by interferon- suppresses bladder cancer through activation of PDE4D.J Exp Clin Cancer Res. 2018 Nov 27;37(1):288. doi: 10.1186/s13046-018-0971-4.
274 Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics.Urol Oncol. 2014 Jan;32(1):47.e21-8. doi: 10.1016/j.urolonc.2013.06.017. Epub 2013 Oct 17.
275 RhoGDI promotes Sp1/MMP-2 expression and bladder cancer invasion through perturbing miR-200c-targeted JNK2 protein translation.Mol Oncol. 2017 Nov;11(11):1579-1594. doi: 10.1002/1878-0261.12132. Epub 2017 Sep 11.
276 p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity.Cancer Res. 2010 Jan 15;70(2):832-41. doi: 10.1158/0008-5472.CAN-09-2918. Epub 2010 Jan 12.
277 Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines.Investig Clin Urol. 2016 Jan;57(1):63-72. doi: 10.4111/icu.2016.57.1.63. Epub 2016 Jan 11.
278 Midkine promoter-based conditionally replicative adenovirus for targeting midkine-expressing human bladder cancer model.Urology. 2007 Nov;70(5):1009-13. doi: 10.1016/j.urology.2007.07.003. Epub 2007 Oct 24.
279 Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation.BMC Cancer. 2016 Aug 2;16:578. doi: 10.1186/s12885-016-2640-3.
280 Milk fat globule--epidermal growth factor--factor VIII (MFGE8)/lactadherin promotes bladder tumor development.Oncogene. 2011 Feb 10;30(6):642-53. doi: 10.1038/onc.2010.446. Epub 2010 Oct 18.
281 Inhibition of bladder tumour growth by sirolimus in an experimental carcinogenesis model.BJU Int. 2011 Jan;107(1):135-43. doi: 10.1111/j.1464-410X.2010.09326.x.
282 Altered expression of HER-2 and the mismatch repair genes MLH1 and MSH2 predicts the outcome of T1 high-grade bladder cancer.J Cancer Res Clin Oncol. 2018 Apr;144(4):637-644. doi: 10.1007/s00432-018-2593-9. Epub 2018 Jan 23.
283 MMP-1 and Pro-MMP-10 as potential urinary pharmacodynamic biomarkers of FGFR3-targeted therapy in patients with bladder cancer.Clin Cancer Res. 2014 Dec 15;20(24):6324-35. doi: 10.1158/1078-0432.CCR-13-3336. Epub 2014 Oct 17.
284 Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer.Cancer Sci. 2016 Sep;107(9):1233-42. doi: 10.1111/cas.13002. Epub 2016 Sep 6.
285 Genetic polymorphisms in matrix metalloproteinases (MMPs) and tissue inhibitors of MPs (TIMPs), and bladder cancer susceptibility.BJU Int. 2013 Dec;112(8):1207-14. doi: 10.1111/bju.12230. Epub 2013 Jul 2.
286 Transforming growth factor? induces epithelialmesenchymal transition and increased expression of matrix metalloproteinase?6 via miR?00b downregulation in bladder cancer cells.Mol Med Rep. 2014 Sep;10(3):1549-54. doi: 10.3892/mmr.2014.2366. Epub 2014 Jul 7.
287 Association of Matrix Metalloproteinase-8 Genotypes with the Risk of Bladder Cancer.Anticancer Res. 2018 Sep;38(9):5159-5164. doi: 10.21873/anticanres.12838.
288 Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case-control study using a structural equation modeling.PLoS One. 2014 Apr 10;9(4):e94566. doi: 10.1371/journal.pone.0094566. eCollection 2014.
289 Low frequency of HNPCC-associated microsatellite instability and aberrant MMR protein expression in early-onset bladder cancer.Am J Clin Pathol. 2014 Nov;142(5):634-9. doi: 10.1309/AJCPVTCJ4VU5HKVZ.
290 A Whole-genome CRISPR Screen Identifies a Role of MSH2 in Cisplatin-mediated Cell Death in Muscle-invasive Bladder Cancer.Eur Urol. 2019 Feb;75(2):242-250. doi: 10.1016/j.eururo.2018.10.040. Epub 2018 Nov 7.
291 MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer.Cancer Sci. 2019 Jul;110(7):2189-2199. doi: 10.1111/cas.14035. Epub 2019 May 27.
292 High CD204+ tumor-infiltrating macrophage density predicts a poor prognosis in patients with urothelial cell carcinoma of the bladder.Oncotarget. 2015 Aug 21;6(24):20204-14. doi: 10.18632/oncotarget.3887.
293 RON is overexpressed in bladder cancer and contributes to tumorigenic phenotypes in 5637 cells.Oncol Lett. 2018 May;15(5):6547-6554. doi: 10.3892/ol.2018.8135. Epub 2018 Feb 28.
294 miR-30e-5p suppresses cell proliferation and migration in bladder cancer through regulating metadherin.J Cell Biochem. 2019 Sep;120(9):15924-15932. doi: 10.1002/jcb.28866. Epub 2019 May 8.
295 Metallothionein isoform 1 and 2 gene expression in the human bladder: evidence for upregulation of MT-1X mRNA in bladder cancer.Cancer Detect Prev. 2001;25(1):62-75.
296 Interaction of YAP1 and mTOR promotes bladder cancer progression.Int J Oncol. 2020 Jan;56(1):232-242. doi: 10.3892/ijo.2019.4922. Epub 2019 Nov 25.
297 Association of nineteen polymorphisms from seven DNA repair genes and the risk for bladder cancer in Gansu province of China.Oncotarget. 2016 May 24;7(21):31372-83. doi: 10.18632/oncotarget.9146.
298 Expression of N-Myc Downstream-Regulated Gene 2 in Bladder Cancer and Its Potential Utility as a Urinary Diagnostic Biomarker.Med Sci Monit. 2017 Sep 27;23:4644-4649. doi: 10.12659/msm.901610.
299 Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway.Cancer Lett. 2017 Sep 10;403:305-317. doi: 10.1016/j.canlet.2017.06.027. Epub 2017 Jul 4.
300 Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer.Bioorg Med Chem. 2017 Feb 1;25(3):1242-1249. doi: 10.1016/j.bmc.2016.12.042. Epub 2016 Dec 27.
301 Prognostic value of serum nicotinamide phosphoribosyltransferase in patients with bladder cancer.Croat Med J. 2014 Oct;55(5):507-13. doi: 10.3325/cmj.2014.55.507.
302 Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1.J Biol Chem. 2014 Apr 18;289(16):11219-11229. doi: 10.1074/jbc.M113.535989. Epub 2014 Feb 28.
303 Repression of GRIM19 expression potentiates cisplatin chemoresistance in advanced bladder cancer cells via disrupting ubiquitination-mediated Bcl-xL degradation.Cancer Chemother Pharmacol. 2018 Oct;82(4):593-605. doi: 10.1007/s00280-018-3651-3. Epub 2018 Jul 21.
304 Targeting Nectin-4 in Bladder Cancer.Cancer Discov. 2017 Aug;7(8):OF3. doi: 10.1158/2159-8290.CD-NB2017-095. Epub 2017 Jun 20.
305 NRP-1 expression in bladder cancer and its implications for tumor progression.Tumour Biol. 2014 Jun;35(6):6089-94. doi: 10.1007/s13277-014-1806-3. Epub 2014 Mar 14.
306 NOTCH1 regulates the proliferation and migration of bladder cancer cells by cooperating with long non-coding RNA HCG18 and microRNA-34c-5p.J Cell Biochem. 2019 Apr;120(4):6596-6604. doi: 10.1002/jcb.27954. Epub 2018 Nov 13.
307 Long non-coding RNA ARAP1-AS1 promotes the progression of bladder cancer by regulating miR-4735-3p/NOTCH2 axis.Cancer Biol Ther. 2019;20(4):552-561. doi: 10.1080/15384047.2018.1538613. Epub 2018 Nov 7.
308 Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity.J Biotechnol. 2017 Oct 10;259:135-139. doi: 10.1016/j.jbiotec.2017.07.029. Epub 2017 Jul 29.
309 Association of nucleophosmin/B23 with bladder cancer recurrence based on immunohistochemical assessment in clinical samples.Acta Pharmacol Sin. 2008 Mar;29(3):364-70. doi: 10.1111/j.1745-7254.2008.00747.x.
310 1,1-Bis(3'-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth.Mol Cancer Ther. 2008 Dec;7(12):3825-33. doi: 10.1158/1535-7163.MCT-08-0730.
311 Expression of HER3, HER4 and their ligand heregulin-4 is associated with better survival in bladder cancer patients.Br J Cancer. 2004 Dec 13;91(12):2034-41. doi: 10.1038/sj.bjc.6602251.
312 Cell-type-specific CD73 expression is an independent prognostic factor in bladder cancer.Carcinogenesis. 2019 Mar 12;40(1):84-92. doi: 10.1093/carcin/bgy154.
313 A feed forward loop enforces YAP/TAZ signaling during tumorigenesis.Nat Commun. 2018 Aug 29;9(1):3510. doi: 10.1038/s41467-018-05939-2.
314 The role of oncostatin M receptor gene polymorphisms in bladder cancer.World J Surg Oncol. 2019 Feb 12;17(1):30. doi: 10.1186/s12957-018-1555-7.
315 Clinicopathological and cellular signature of PAK1 in human bladder cancer.Tumour Biol. 2015 Apr;36(4):2359-68. doi: 10.1007/s13277-014-2843-7. Epub 2014 Nov 21.
316 Expression of PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) in human urinary bladder transitional cell carcinoma.Immunobiology. 2014 Jun;219(6):469-74. doi: 10.1016/j.imbio.2014.02.003. Epub 2014 Feb 25.
317 PBRM1 suppresses bladder cancer by cyclin B1 induced cell cycle arrest.Oncotarget. 2015 Jun 30;6(18):16366-78. doi: 10.18632/oncotarget.3879.
318 LINE-1 methylation in leukocyte DNA, interaction with phosphatidylethanolamine N-methyltransferase variants and bladder cancer risk.Br J Cancer. 2014 Apr 15;110(8):2123-30. doi: 10.1038/bjc.2014.67. Epub 2014 Mar 4.
319 Targeting of MCT1 and PFKFB3 influences cell proliferation and apoptosis in bladder cancer by altering the tumor microenvironment.Oncol Rep. 2016 Aug;36(2):945-51. doi: 10.3892/or.2016.4884. Epub 2016 Jun 16.
320 Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention.Oncotarget. 2017 Apr 20;8(41):69435-69455. doi: 10.18632/oncotarget.17279. eCollection 2017 Sep 19.
321 PIGU overexpression adds value to TNM staging in the prognostic stratification of patients with hepatocellular carcinoma.Hum Pathol. 2019 Jan;83:90-99. doi: 10.1016/j.humpath.2018.08.013. Epub 2018 Aug 30.
322 MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway.Hum Cell. 2020 Jan;33(1):185-194. doi: 10.1007/s13577-019-00285-x. Epub 2019 Oct 11.
323 mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer.Cell Signal. 2017 Jan;29:96-106. doi: 10.1016/j.cellsig.2016.10.010. Epub 2016 Oct 21.
324 Identification of urine PLK2 as a marker of bladder tumors by proteomic analysis.World J Urol. 2010 Feb;28(1):117-22. doi: 10.1007/s00345-009-0432-y. Epub 2009 Jun 9.
325 Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer.Br J Cancer. 2016 Jul 26;115(3):354-63. doi: 10.1038/bjc.2016.179. Epub 2016 Jun 16.
326 Proteomic characterization of arsenic and cadmium exposure in bladder cells.Rapid Commun Mass Spectrom. 2020 Apr;34 Suppl 1:e8578. doi: 10.1002/rcm.8578. Epub 2020 Feb 8.
327 Comparison of arsenic methylation capacity and polymorphisms of arsenic methylation genes between bladder cancer and upper tract urothelial carcinoma.Toxicol Lett. 2018 Oct 1;295:64-73. doi: 10.1016/j.toxlet.2018.05.035. Epub 2018 May 30.
328 Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk.Carcinogenesis. 2009 May;30(5):763-8. doi: 10.1093/carcin/bgp046. Epub 2009 Feb 23.
329 Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-/Smad signaling pathway.Oncotarget. 2014 Jul 30;5(14):5700-11. doi: 10.18632/oncotarget.2144.
330 Wild-type p53-induced phosphatase 1 is a prognostic marker and therapeutic target in bladder transitional cell carcinoma.Oncol Lett. 2017 Feb;13(2):875-880. doi: 10.3892/ol.2016.5475. Epub 2016 Dec 8.
331 Analysis of Autoantibodies Related to Tumor Progression in Sera from Patients with High-grade Non-muscle-invasive Bladder Cancer.Anticancer Res. 2017 Dec;37(12):6705-6714. doi: 10.21873/anticanres.12129.
332 Disruption of serine/threonine protein phosphatase 5 inhibits tumorigenesis of urinary bladder cancer cells.Int J Oncol. 2017 Jul;51(1):39-48. doi: 10.3892/ijo.2017.3997. Epub 2017 May 16.
333 Interaction between polymorphisms of DNA repair genes significantly modulated bladder cancer risk.Int J Med Sci. 2012;9(6):498-505. doi: 10.7150/ijms.4799. Epub 2012 Aug 17.
334 Circular RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation through upregulating EZH2 via sponging miR-377/382/498.Gene. 2019 Dec 15;720:144099. doi: 10.1016/j.gene.2019.144099. Epub 2019 Aug 31.
335 Cationized liposomal keto-mycolic acids isolated from Mycobacterium bovis bacillus Calmette-Gurin induce antitumor immunity in a syngeneic murine bladder cancer model.PLoS One. 2019 Jan 4;14(1):e0209196. doi: 10.1371/journal.pone.0209196. eCollection 2019.
336 Contribution of prostate stem cell antigen variation rs2294008 to the risk of bladder cancer.Medicine (Baltimore). 2019 Apr;98(16):e15179. doi: 10.1097/MD.0000000000015179.
337 Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1.J Cell Physiol. 2020 Feb;235(2):1711-1722. doi: 10.1002/jcp.29090. Epub 2019 Jul 15.
338 CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1.Cell Death Dis. 2018 Oct 12;9(10):1046. doi: 10.1038/s41419-018-1109-5.
339 Detection of tyrosine kinase inhibitors-induced COX-2 expression in bladder cancer by fluorocoxib A.Oncotarget. 2019 Aug 27;10(50):5168-5180. doi: 10.18632/oncotarget.27125. eCollection 2019 Aug 27.
340 Retinoic Acid-Related Orphan Receptor C Regulates Proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer.Cancer Res. 2019 May 15;79(10):2604-2618. doi: 10.1158/0008-5472.CAN-18-3842. Epub 2019 Feb 26.
341 Overexpression of PTK6 predicts poor prognosis in bladder cancer patients.J Cancer. 2017 Sep 27;8(17):3464-3473. doi: 10.7150/jca.21318. eCollection 2017.
342 Overexpression of PTP4A3 is associated with metastasis and unfavorable prognosis in bladder cancer.World J Urol. 2016 Jun;34(6):835-46. doi: 10.1007/s00345-015-1698-x. Epub 2015 Oct 3.
343 Gene promoter methylation and cancer: An umbrella review.Gene. 2019 Aug 20;710:333-340. doi: 10.1016/j.gene.2019.06.023. Epub 2019 Jun 13.
344 Downregulation of Ral GTPase-activating protein promotes tumor invasion and metastasis of bladder cancer.Oncogene. 2013 Feb 14;32(7):894-902. doi: 10.1038/onc.2012.101. Epub 2012 Mar 26.
345 Genetic polymorphisms of cytochrome P450 CYP1A1 (*2A) and microsomal epoxide hydrolase gene, interactions with tobacco-users, and susceptibility to bladder cancer: a study from North India.Arch Toxicol. 2008 Sep;82(9):633-9. doi: 10.1007/s00204-007-0276-4. Epub 2008 Jan 16.
346 Epigenetic repression of regulator of G-protein signaling 2 by ubiquitin-like with PHD and ring-finger domain1 promotes bladder cancer progression.FEBS J. 2015 Jan;282(1):174-82. doi: 10.1111/febs.13116. Epub 2014 Dec 3.
347 Genetic variations in regulator of G-protein signaling (RGS) confer risk of bladder cancer.Cancer. 2013 May 1;119(9):1643-51. doi: 10.1002/cncr.27871. Epub 2013 Mar 25.
348 A functional polymorphism in RGS6 modulates the risk of bladder cancer.Cancer Res. 2004 Sep 15;64(18):6820-6. doi: 10.1158/0008-5472.CAN-04-1916.
349 The suppressive effect of Rho kinase inhibitor, Y-27632, on oncogenic Ras/RhoA induced invasion/migration of human bladder cancer TSGH cells. Chem Biol Interact. 2010 Jan 5;183(1):172-80. doi: 10.1016/j.cbi.2009.10.018.
350 Nuclear Localization of Robo is Associated with Better Survival in Bladder Cancer.Pathol Oncol Res. 2020 Jan;26(1):253-261. doi: 10.1007/s12253-018-0447-z. Epub 2018 Jul 17.
351 miR-204 Negatively Regulates Cell Growth And Metastasis By Targeting ROBO4 In Human Bladder Cancer.Onco Targets Ther. 2019 Oct 16;12:8515-8524. doi: 10.2147/OTT.S205023. eCollection 2019.
352 MicroRNA-335 is downregulated in bladder cancer and inhibits cell growth, migration and invasion via targeting ROCK1.Mol Med Rep. 2016 May;13(5):4379-85. doi: 10.3892/mmr.2016.5055. Epub 2016 Mar 28.
353 Targeted regulation by ROCK2 on bladder carcinoma via Wnt signaling under hypoxia.Cancer Biomark. 2019;24(1):109-116. doi: 10.3233/CBM-181949.
354 Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63 Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity.Mol Cell Biol. 2018 Oct 15;38(21):e00273-18. doi: 10.1128/MCB.00273-18. Print 2018 Nov 1.
355 Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP.Anticancer Drugs. 2014 Sep;25(8):887-97. doi: 10.1097/CAD.0000000000000116.
356 Somatic FGFR3 Mutations Distinguish a Subgroup of Muscle-Invasive Bladder Cancers with Response to Neoadjuvant Chemotherapy.EBioMedicine. 2018 Sep;35:198-203. doi: 10.1016/j.ebiom.2018.06.011. Epub 2018 Jun 22.
357 Ribonucleotide reductase M2 subunit expression and prognostic value in nasopharyngeal carcinoma.Mol Med Rep. 2015 Jul;12(1):401-9. doi: 10.3892/mmr.2015.3360. Epub 2015 Feb 16.
358 Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation.Elife. 2017 Nov 16;6:e30862. doi: 10.7554/eLife.30862.
359 Expression of miR-149-3p inhibits proliferation, migration, and invasion of bladder cancer by targeting S100A4.Am J Cancer Res. 2017 Nov 1;7(11):2209-2219. eCollection 2017.
360 Calgranulin A (S100A8) Immunostaining: A Future Candidate for Risk Assessment in Patients with Non-Muscle-Invasive Bladder Cancer (NMIBC).Adv Ther. 2018 Nov;35(11):2054-2068. doi: 10.1007/s12325-018-0789-7. Epub 2018 Sep 19.
361 Immunological tumor status may predict response to neoadjuvant chemotherapy and outcome after radical cystectomy in bladder cancer.Sci Rep. 2017 Oct 4;7(1):12682. doi: 10.1038/s41598-017-12892-5.
362 The S100 proteins for screening and prognostic grading of bladder cancer.Histol Histopathol. 2007 Sep;22(9):1025-32. doi: 10.14670/HH-22.1025.
363 SATB1 and bladder cancer: Is there a functional link?.Urol Oncol. 2018 Mar;36(3):93.e13-93.e21. doi: 10.1016/j.urolonc.2017.10.004. Epub 2017 Oct 25.
364 Inhibition of stearoyl CoA desaturase-1 activity suppresses tumour progression and improves prognosis in human bladder cancer.J Cell Mol Med. 2019 Mar;23(3):2064-2076. doi: 10.1111/jcmm.14114. Epub 2018 Dec 27.
365 Clinical implications in the shift of syndecan-1 expression from the cell membrane to the cytoplasm in bladder cancer.BMC Cancer. 2014 Feb 13;14:86. doi: 10.1186/1471-2407-14-86.
366 5-Aza-2'-deoxycytidine enhances maspin expression and inhibits proliferation, migration, and invasion of the bladder cancer T24 cell line.Cancer Biother Radiopharm. 2013 May;28(4):343-50. doi: 10.1089/cbr.2012.1303. Epub 2013 Apr 9.
367 Expression of RFC/SLC19A1 is associated with tumor type in bladder cancer patients.PLoS One. 2011;6(7):e21820. doi: 10.1371/journal.pone.0021820. Epub 2011 Jul 8.
368 Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c-Myc expression and transcriptional activity.Cell Death Dis. 2017 Feb 2;8(2):e2581. doi: 10.1038/cddis.2017.13.
369 Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer.Br J Cancer. 1999 Oct;81(3):537-41. doi: 10.1038/sj.bjc.6690727.
370 Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014 Apr 1;20(7):1990-2000.
371 SLCO1B1, SLCO2B1, and SLCO1B3 polymorphisms and susceptibility to bladder cancer risk.Cancer Invest. 2014 Jul;32(6):256-61. doi: 10.3109/07357907.2014.907421. Epub 2014 Apr 24.
372 Upregulated SMYD3 promotes bladder cancer progression by targeting BCLAF1 and activating autophagy.Tumour Biol. 2016 Jun;37(6):7371-81. doi: 10.1007/s13277-015-4410-2. Epub 2015 Dec 16.
373 Diagnostic potential in bladder cancer of a panel of tumor markers (calreticulin, gamma -synuclein, and catechol-o-methyltransferase) identified by proteomic analysis.Cancer Sci. 2004 Dec;95(12):955-61. doi: 10.1111/j.1349-7006.2004.tb03183.x.
374 Different Gene Expression and Activity Pattern of Antioxidant Enzymes in Bladder Cancer.Anticancer Res. 2017 Feb;37(2):841-848. doi: 10.21873/anticanres.11387.
375 Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer.J Urol. 2006 May;175(5):1915-20. doi: 10.1016/S0022-5347(05)00919-5.
376 Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression.Cell Mol Life Sci. 2020 Jan;77(2):351-363. doi: 10.1007/s00018-019-03185-3. Epub 2019 Jun 20.
377 Unraveling the Receptor-Ligand Interactions between Bladder Cancer Cells and the Endothelium Using AFM.Biophys J. 2017 Mar 28;112(6):1246-1257. doi: 10.1016/j.bpj.2017.01.033.
378 Comprehensive analyses of DNA repair pathways, smoking and bladder cancer risk in Los Angeles and Shanghai.Int J Cancer. 2014 Jul 15;135(2):335-47. doi: 10.1002/ijc.28693. Epub 2014 Jan 13.
379 HMGB3 promotes growth and migration in colorectal cancer by regulating WNT/-catenin pathway.PLoS One. 2017 Jul 5;12(7):e0179741. doi: 10.1371/journal.pone.0179741. eCollection 2017.
380 Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.Anticancer Res. 2014 Jun;34(6):2937-42.
381 ASC-J9 increases the bladder cancer chemotherapy efficacy via altering the androgen receptor (AR) and NF-B survival signals.J Exp Clin Cancer Res. 2019 Jun 24;38(1):275. doi: 10.1186/s13046-019-1258-0.
382 The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells.Clin Cancer Res. 2017 Nov 1;23(21):6673-6685. doi: 10.1158/1078-0432.CCR-17-0882. Epub 2017 Aug 1.
383 TACC3 transcriptionally upregulates E2F1 to promote cell growth and confer sensitivity to cisplatin in bladder cancer.Cell Death Dis. 2018 Jan 22;9(2):72. doi: 10.1038/s41419-017-0112-6.
384 Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells.Int J Oncol. 2018 Aug;53(2):515-526. doi: 10.3892/ijo.2018.4423. Epub 2018 May 30.
385 CALD1, CNN1, and TAGLN identified as potential prognostic molecular markers of bladder cancer by bioinformatics analysis.Medicine (Baltimore). 2019 Jan;98(2):e13847. doi: 10.1097/MD.0000000000013847.
386 MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle.J Cell Physiol. 2019 Apr;234(4):4910-4923. doi: 10.1002/jcp.27288. Epub 2018 Oct 14.
387 TBK1 Promote Bladder Cancer Cell Proliferation and Migration via Akt Signaling.J Cancer. 2017 Jul 3;8(10):1892-1899. doi: 10.7150/jca.17638. eCollection 2017.
388 Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer.Cancer Res. 2005 Dec 15;65(24):11581-7. doi: 10.1158/0008-5472.CAN-05-1622.
389 Roles of tumor suppressor and telomere maintenance genes in cancer and aging--an epidemiological study.Carcinogenesis. 2005 Oct;26(10):1741-7. doi: 10.1093/carcin/bgi126. Epub 2005 May 19.
390 Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression.Mol Cancer. 2019 Feb 19;18(1):27. doi: 10.1186/s12943-019-0951-0.
391 Dual role of TGFBR3 in bladder cancer.Oncol Rep. 2013 Sep;30(3):1301-8. doi: 10.3892/or.2013.2599. Epub 2013 Jul 8.
392 DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus.Int J Cancer. 2018 Jul 15;143(2):289-297. doi: 10.1002/ijc.31318. Epub 2018 Mar 1.
393 Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis.Mol Med Rep. 2018 Sep;18(3):3403-3410. doi: 10.3892/mmr.2018.9306. Epub 2018 Jul 23.
394 Tankyrase-1 mRNA expression in bladder cancer and paired urine sediment: preliminary experience.Clin Chem Lab Med. 2007;45(7):862-6. doi: 10.1515/CCLM.2007.133.
395 Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-B/IKK pathway-induced apoptosis.PLoS One. 2013;8(1):e50175. doi: 10.1371/journal.pone.0050175. Epub 2013 Jan 24.
396 DNA topoisomerase II and RAD21 cohesin complex component are predicted as potential therapeutic targets in bladder cancer.Oncol Lett. 2019 Jul;18(1):518-528. doi: 10.3892/ol.2019.10365. Epub 2019 May 17.
397 Clinical significance and biological roles of TRIM24 in human bladder carcinoma.Tumour Biol. 2015 Sep;36(9):6849-55. doi: 10.1007/s13277-015-3393-3. Epub 2015 Apr 7.
398 TRIM59 overexpression correlates with poor prognosis and contributes to breast cancer progression through AKT signaling pathway.Mol Carcinog. 2018 Dec;57(12):1792-1802. doi: 10.1002/mc.22897. Epub 2018 Sep 20.
399 TRPM2 mediates histone deacetylase inhibition-induced apoptosis in bladder cancer cells.Cancer Biother Radiopharm. 2015 Mar;30(2):87-93. doi: 10.1089/cbr.2014.1697.
400 TRPM7 is overexpressed in bladder cancer and promotes proliferation, migration, invasion and tumor growth.Oncol Rep. 2017 Oct;38(4):1967-1976. doi: 10.3892/or.2017.5883. Epub 2017 Aug 7.
401 Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters.Histopathology. 2010 Nov;57(5):744-52. doi: 10.1111/j.1365-2559.2010.03683.x.
402 TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.PLoS One. 2013 May 31;8(5):e64885. doi: 10.1371/journal.pone.0064885. Print 2013.
403 Mitotic checkpoint genes hBUB1, hBUB1B, hBUB3 and TTK in human bladder cancer, screening for mutations and loss of heterozygosity.Carcinogenesis. 2001 May;22(5):813-5. doi: 10.1093/carcin/22.5.813.
404 miR-203 Suppresses Bladder Cancer Cell Growth and Targets Twist1.Oncol Res. 2018 Sep 14;26(8):1155-1165. doi: 10.3727/096504017X15041934685237. Epub 2017 Sep 6.
405 Evaluation of the diagnostic accuracy of UBC() Rapid in bladder cancer: a Swedish multicentre study.Scand J Urol. 2017 Aug;51(4):293-300. doi: 10.1080/21681805.2017.1313309. Epub 2017 Apr 19.
406 Knockdown of UBE2T Inhibits Osteosarcoma Cell Proliferation, Migration, and Invasion by Suppressing the PI3K/Akt Signaling Pathway.Oncol Res. 2016;24(5):361-369. doi: 10.3727/096504016X14685034103310.
407 Identification and validation of a novel autophagy gene expression signature for human bladder cancer patients.Tumour Biol. 2017 Apr;39(4):1010428317698360. doi: 10.1177/1010428317698360.
408 CCDC6 and USP7 expression levels suggest novel treatment options in high-grade urothelial bladder cancer.J Exp Clin Cancer Res. 2019 Feb 20;38(1):90. doi: 10.1186/s13046-019-1087-1.
409 Urotensin II receptor determines prognosis of bladder cancer regulating cell motility/invasion.J Exp Clin Cancer Res. 2014 Jun 3;33(1):48. doi: 10.1186/1756-9966-33-48.
410 Silencing circular RNA VANGL1 inhibits progression of bladder cancer by regulating miR-1184/IGFBP2 axis.Cancer Med. 2020 Jan;9(2):700-710. doi: 10.1002/cam4.2650. Epub 2019 Nov 23.
411 Expression analysis of VEGF-A and VEGF-B: relationship with clinicopathological parameters in bladder cancer.Oncol Rep. 2009 Jun;21(6):1495-504. doi: 10.3892/or_00000380.
412 MicroRNAs as regulators of signal transduction in urological tumors.Clin Chem. 2011 Jul;57(7):954-68. doi: 10.1373/clinchem.2010.157727. Epub 2011 Jun 1.
413 B7-Homolog 4 Promotes Epithelial-Mesenchymal Transition and Invasion of Bladder Cancer Cells via Activation of Nuclear Factor-B.Oncol Res. 2018 Sep 14;26(8):1267-1274. doi: 10.3727/096504018X15172227703244. Epub 2018 Feb 1.
414 Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation.Sci Rep. 2015 Feb 6;5:8293. doi: 10.1038/srep08293.
415 Downregulated XPA promotes carcinogenesis of bladder cancer via impairment of DNA repair.Tumour Biol. 2017 Feb;39(2):1010428317691679. doi: 10.1177/1010428317691679.
416 Significant association of Ku80 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan.Anticancer Res. 2009 Apr;29(4):1275-9.
417 Coexistence of copy number changes of different genes (INK4A, erbB-1, erbB-2, CMYC, CCND1 and ZNF217) in urothelial tumors.Tumour Biol. 2005 Mar-Apr;26(2):88-93. doi: 10.1159/000085815. Epub 2005 May 13.
418 DEP domain containing 1 suppresses apoptosis via inhibition of A20 expression, which activates the nuclear factor B signaling pathway in HepG2 cells.Oncol Lett. 2018 Jul;16(1):949-955. doi: 10.3892/ol.2018.8770. Epub 2018 May 22.
419 MiR-15 suppressed the progression of bladder cancer by targeting BMI1 oncogene via PI3K/AKT signaling pathway.Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8813-8822. doi: 10.26355/eurrev_201910_19276.
420 Application of targeted radiotherapy/gene therapy to bladder cancer cell lines.Eur Urol. 2005 Feb;47(2):250-6. doi: 10.1016/j.eururo.2004.09.009.
421 Overexpression of REIC/Dkk-3 suppresses the expression of CD147 and inhibits the proliferation of human bladder cancer cells.Oncol Lett. 2017 Sep;14(3):3223-3228. doi: 10.3892/ol.2017.6548. Epub 2017 Jul 8.
422 [One molecule, two faces. Epithelial loss of cell adhesion molecule CEACAM1 activates angiogenesis in bladder and prostate cancer].Urologe A. 2007 Sep;46(9):1128-34. doi: 10.1007/s00120-007-1461-z.
423 Significant association of catechol-O-methyltransferase Val158Met polymorphism with bladder cancer instead of prostate and kidney cancer.Int J Biol Markers. 2016 May 28;31(2):e110-7. doi: 10.5301/jbm.5000204.
424 Genetic polymorphisms in NQO1 and SOD2: interactions with smoking, schistosoma infection, and bladder cancer risk in Egypt.Urol Oncol. 2014 Jan;32(1):47.e15-20. doi: 10.1016/j.urolonc.2013.06.016. Epub 2013 Sep 10.
425 Granulocyte colony-stimulating factor/granulocyte colony-stimulating factor receptor biological axis promotes survival and growth of bladder cancer cells.Urology. 2007 Jun;69(6):1210-5. doi: 10.1016/j.urology.2007.02.035.
426 Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy.Nat Rev Urol. 2018 Feb;15(2):92-111. doi: 10.1038/nrurol.2017.179. Epub 2017 Nov 14.
427 Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer.Proteomics. 2009 Jan;9(2):287-98. doi: 10.1002/pmic.200800121.
428 Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer, stomach cancer, lung cancer and bladder cancer in Chinese population.World J Gastroenterol. 2004 Jul 1;10(13):1961-3. doi: 10.3748/wjg.v10.i13.463.
429 REIC/Dkk-3-encoding adenoviral vector as a potentially effective therapeutic agent for bladder cancer.Int J Oncol. 2012 Aug;41(2):559-64. doi: 10.3892/ijo.2012.1503. Epub 2012 May 31.
430 Expression of cyclin D1 and EMS1 in bladder tumours; relationship with chromosome 11q13 amplification.Oncogene. 1996 Apr 18;12(8):1747-53.
431 Common Polymorphisms in GSTA1, GSTM1 and GSTT1 Are Associated with Susceptibility to Urinary Bladder Cancer in Individuals from Balkan Endemic Nephropathy Areas of Serbia.Tohoku J Exp Med. 2016 Sep;240(1):25-30. doi: 10.1620/tjem.240.25.
432 Integrin-linked kinase regulates cadherin switch in bladder cancer.Tumour Biol. 2016 Nov;37(11):15185-15191. doi: 10.1007/s13277-016-5354-x. Epub 2016 Sep 28.
433 LncRNA ITGB1 promotes the development of bladder cancer through regulating microRNA-10a expression.Eur Rev Med Pharmacol Sci. 2019 Aug;23(16):6858-6867. doi: 10.26355/eurrev_201908_18725.
434 KIF15 promotes bladder cancer proliferation via the MEK-ERK signaling pathway.Cancer Manag Res. 2019 Feb 26;11:1857-1868. doi: 10.2147/CMAR.S191681. eCollection 2019.
435 Ibuprofen inhibits survival of bladder cancer cells by induced expression of the p75NTR tumor suppressor protein.Cancer Res. 2004 Sep 1;64(17):6207-13. doi: 10.1158/0008-5472.CAN-03-3814.
436 Attenuated NER expressions of XPF and XPC associated with smoking are involved in the recurrence of bladder cancer.PLoS One. 2014 Dec 23;9(12):e115224. doi: 10.1371/journal.pone.0115224. eCollection 2014.
437 Pax-5 protein expression in bladder cancer: a preliminary study that shows no correlation to grade, stage or clinical outcome.Pathology. 2008 Aug;40(5):465-9. doi: 10.1080/00313020802197871.
438 A Feedback Loop Formed by ATG7/Autophagy, FOXO3a/miR-145 and PD-L1 Regulates Stem-Like Properties and Invasion in Human Bladder Cancer.Cancers (Basel). 2019 Mar 12;11(3):349. doi: 10.3390/cancers11030349.
439 Assessment of CEP55, PLK1 and FOXM1 expression in patients with bladder cancer in comparison with healthy individuals.Cancer Invest. 2018;36(8):407-414. doi: 10.1080/07357907.2018.1514504. Epub 2018 Oct 2.
440 Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer.PLoS One. 2012;7(11):e51056. doi: 10.1371/journal.pone.0051056. Epub 2012 Nov 30.
441 Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line.Asian Pac J Cancer Prev. 2013;14(6):3773-8. doi: 10.7314/apjcp.2013.14.6.3773.
442 SLC14A1: a novel target for human urothelial cancer.Clin Transl Oncol. 2017 Dec;19(12):1438-1446. doi: 10.1007/s12094-017-1693-3. Epub 2017 Jun 6.
443 CircZFR serves as a prognostic marker to promote bladder cancer progression by regulating miR-377/ZEB2 signaling.Biosci Rep. 2019 Dec 20;39(12):BSR20192779. doi: 10.1042/BSR20192779.
444 NRAMP1 and hGPX1 gene polymorphism and response to bacillus Calmette-Gurin therapy for bladder cancer.Eur Urol. 2011 Mar;59(3):430-7. doi: 10.1016/j.eururo.2010.11.031. Epub 2010 Dec 1.
445 Increased BCL2L12 expression predicts the short-term relapse of patients with TaT1 bladder cancer following transurethral resection of bladder tumors.Urol Oncol. 2014 Jan;32(1):39.e29-36. doi: 10.1016/j.urolonc.2013.04.005. Epub 2013 Jun 18.
446 Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device.Cell Cycle. 2015;14(19):3058-65. doi: 10.1080/15384101.2015.1053666. Epub 2015 Jun 30.
447 A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis.Tumour Biol. 2015 Jan;36(1):383-91. doi: 10.1007/s13277-014-2617-2. Epub 2014 Sep 30.
448 MiR-411 suppresses the development of bladder cancer by regulating ZnT1.Onco Targets Ther. 2018 Dec 4;11:8695-8704. doi: 10.2147/OTT.S173750. eCollection 2018.
449 A role for the copper transporter Ctr1 in the synergistic interaction between hyperthermia and cisplatin treatment.Int J Hyperthermia. 2013 Sep;29(6):528-38. doi: 10.3109/02656736.2013.790563. Epub 2013 Jul 23.
450 Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk.Br J Cancer. 2013 Jun 11;108(11):2372-80. doi: 10.1038/bjc.2013.190. Epub 2013 Apr 30.
451 Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer.Tumour Biol. 2015 Sep;36(10):7431-7. doi: 10.1007/s13277-015-3459-2. Epub 2015 Apr 23.
452 SLC39A2 and FSIP1 polymorphisms as potential modifiers of arsenic-related bladder cancer. Hum Genet. 2012 Mar;131(3):453-61. doi: 10.1007/s00439-011-1090-x. Epub 2011 Sep 25.
453 Vasitis nodosa and related lesions: a modern immunohistochemical staining profile with special emphasis on novel diagnostic dilemmas.Hum Pathol. 2018 Mar;73:164-170. doi: 10.1016/j.humpath.2017.12.001. Epub 2017 Dec 11.
454 Evaluation of NMP22 in bladder cancer patients sensitive to environmental toxins.Adv Clin Exp Med. 2017 Oct;26(7):1069-1075. doi: 10.17219/acem/63156.
455 CYP27A1 inhibits bladder cancer cells proliferation by regulating cholesterol homeostasis.Cell Cycle. 2019 Jan;18(1):34-45. doi: 10.1080/15384101.2018.1558868. Epub 2018 Dec 30.
456 Pro-GA, a Novel Inhibitor of -Glutamylcyclotransferase, Suppresses Human Bladder Cancer Cell Growth.Anticancer Res. 2019 Apr;39(4):1893-1898. doi: 10.21873/anticanres.13297.
457 Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment.Biol Chem. 2013 Oct;394(10):1333-42. doi: 10.1515/hsz-2013-0201.
458 Metallothionein-1 and -2 expression in cadmium- or arsenic-derived human malignant urothelial cells and tumor heterotransplants and as a prognostic indicator in human bladder cancer.Toxicol Sci. 2006 Jun;91(2):467-75. doi: 10.1093/toxsci/kfj174. Epub 2006 Mar 24.
459 Variation in genes encoding the neuroactive steroid synthetic enzymes 5-reductase type 1 and 3-reductase type 2 is associated with alcohol dependence.Alcohol Clin Exp Res. 2011 May;35(5):946-52. doi: 10.1111/j.1530-0277.2010.01425.x. Epub 2011 Feb 15.
460 Methionine Adenosyltransferase 1a (MAT1A) Enhances Cell Survival During Chemotherapy Treatment and is Associated with Drug Resistance in Bladder Cancer PDX Mice.Int J Mol Sci. 2019 Oct 9;20(20):4983. doi: 10.3390/ijms20204983.
461 Choline-phosphate cytidylyltransferase- as a possible predictor of survival and response to cisplatin neoadjuvant chemotherapy in urothelial cancer of the bladder.Scand J Urol. 2018 Jun;52(3):200-205. doi: 10.1080/21681805.2018.1439527. Epub 2018 Feb 23.
462 Uridine Cytidine Kinase 2 as a Potential Biomarker for Treatment with RX-3117 in Pancreatic Cancer.Anticancer Res. 2019 Jul;39(7):3609-3614. doi: 10.21873/anticanres.13508.
463 Ecto-5'-nucleotidase/CD73 contributes to the radiosensitivity of T24 human bladder cancer cell line.J Cancer Res Clin Oncol. 2018 Mar;144(3):469-482. doi: 10.1007/s00432-017-2567-3. Epub 2018 Jan 5.
464 Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer.Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Mar;1864(3):413-421. doi: 10.1016/j.bbalip.2018.06.005. Epub 2018 Jun 5.
465 Alcohol dehydrogenase type 3 (ADH3) and the risk of bladder cancer.Eur Urol. 2001 Nov;40(5):509-14. doi: 10.1159/000049827.
466 Carboplatin-gemcitabine combination chemotherapy upregulates AKR1B10 expression in bladder cancer.Int J Clin Oncol. 2013 Feb;18(1):177-82. doi: 10.1007/s10147-011-0363-7. Epub 2011 Dec 27.
467 Aldo-keto reductase 1C1 induced by interleukin-1 mediates the invasive potential and drug resistance of metastatic bladder cancer cells.Sci Rep. 2016 Oct 4;6:34625. doi: 10.1038/srep34625.
468 Overexpression of aldo-keto reductase 1C2 as a high-risk factor in bladder cancer.Oncol Rep. 2007 Feb;17(2):305-11.
469 A risk score staging system based on the expression of seven genes predicts the outcome of bladder cancer.Oncol Lett. 2018 Aug;16(2):2091-2096. doi: 10.3892/ol.2018.8904. Epub 2018 Jun 5.
470 Polymorphisms of Arsenic (+3 Oxidation State) Methyltransferase and Arsenic Methylation Capacity Affect the Risk of Bladder Cancer.Toxicol Sci. 2018 Jul 1;164(1):328-338. doi: 10.1093/toxsci/kfy087.
471 Functional characterization of 9 CYP2A13 allelic variants by assessment of nicotine C-oxidation and coumarin 7-hydroxylation.Drug Metab Pharmacokinet. 2018 Feb;33(1):82-89. doi: 10.1016/j.dmpk.2017.11.004. Epub 2017 Nov 22.
472 Possible relationship between the risk of Japanese bladder cancer cases and the CYP4B1 genotype.Jpn J Clin Oncol. 2008 Sep;38(9):634-40. doi: 10.1093/jjco/hyn081. Epub 2008 Aug 19.
473 LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression.Biosci Rep. 2019 Apr 12;39(4):BSR20182372. doi: 10.1042/BSR20182372. Print 2019 Apr 30.
474 Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature.Mutat Res Genet Toxicol Environ Mutagen. 2018 Jul;831:1-12. doi: 10.1016/j.mrgentox.2018.04.005. Epub 2018 Apr 24.
475 HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer.PLoS One. 2012;7(12):e51301. doi: 10.1371/journal.pone.0051301. Epub 2012 Dec 19.
476 MicroRNA-940 Targets INPP4A or GSK3 and Activates the Wnt/-Catenin Pathway to Regulate the Malignant Behavior of Bladder Cancer Cells.Oncol Res. 2018 Jan 19;26(1):145-155. doi: 10.3727/096504017X14902261600566. Epub 2017 Mar 23.
477 High expression of enhancer RNA MARC1 or its activation by DHT is associated with the malignant behavior in bladder cancer.Exp Cell Res. 2018 Sep 15;370(2):303-311. doi: 10.1016/j.yexcr.2018.06.032. Epub 2018 Jun 28.
478 Prognostic significance of HALP (hemoglobin, albumin, lymphocyte and platelet) in patients with bladder cancer after radical cystectomy.Sci Rep. 2018 Jan 15;8(1):794. doi: 10.1038/s41598-018-19146-y.
479 Clinical performance and utility of a NNMT-based urine test for bladder cancer.Int J Biol Markers. 2018 Jan;33(1):94-101. doi: 10.5301/ijbm.5000311.
480 Identification of an enhancer region within the TP63/LEPREL1 locus containing genetic variants associated with bladder cancer risk.Cell Oncol (Dordr). 2018 Oct;41(5):555-568. doi: 10.1007/s13402-018-0393-5. Epub 2018 Jun 28.
481 Exploring the role of paraoxonase-2 in bladder cancer: analyses performed on tissue samples, urines and cell cultures.Oncotarget. 2017 Apr 25;8(17):28785-28795. doi: 10.18632/oncotarget.15674.
482 Evaluation of urinary CA19-9 levels in bladder cancer patients classified according to the combinations of Lewis and Secretor blood group genotypes.Int J Urol. 2007 Sep;14(9):795-9. doi: 10.1111/j.1442-2042.2007.01840.x.
483 Increased expression of the acid sphingomyelinase-like protein ASML3a in bladder tumors.J Urol. 2002 Dec;168(6):2645-9. doi: 10.1016/S0022-5347(05)64236-X.
484 Amplification of FGF-related genes in human tumors: possible involvement of HST in breast carcinomas.Oncogene. 1989 Jul;4(7):915-22.
485 Suppression of AhR signaling pathway is associated with the down-regulation of UDP-glucuronosyltransferases during BBN-induced urinary bladder carcinogenesis in mice.J Biochem. 2010 Mar;147(3):353-60. doi: 10.1093/jb/mvp169. Epub 2009 Oct 29.
486 The association between UGT1A7 polymorphism and cancer risk: a meta-analysis.Cancer Epidemiol. 2012 Aug;36(4):e201-6. doi: 10.1016/j.canep.2012.02.004. Epub 2012 Mar 7.
487 Association of genotypes of carcinogen-metabolizing enzymes and smoking status with bladder cancer in a Japanese population.Environ Health Prev Med. 2013 Mar;18(2):136-42. doi: 10.1007/s12199-012-0302-x. Epub 2012 Sep 9.
488 Occupational exposures and genetic susceptibility to urinary tract cancers: a systematic review and meta-analysis.Eur J Cancer Prev. 2018 Sep;27(5):468-476. doi: 10.1097/CEJ.0000000000000364.
489 The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers.J Clin Lab Anal. 2020 Jan;34(1):e23049. doi: 10.1002/jcla.23049. Epub 2019 Sep 25.
490 Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer.Nat Commun. 2019 Feb 12;10(1):720. doi: 10.1038/s41467-019-08576-5.
491 The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-B/MYC signaling network.Oncogene. 2019 May;38(19):3667-3680. doi: 10.1038/s41388-019-0683-z. Epub 2019 Jan 18.
492 Glycogen debranching enzyme (AGL) is a novel regulator of non-small cell lung cancer growth.Oncotarget. 2018 Mar 30;9(24):16718-16730. doi: 10.18632/oncotarget.24676. eCollection 2018 Mar 30.
493 Adenylate kinase 4 promotes bladder cancer cell proliferation and invasion.Clin Exp Med. 2019 Nov;19(4):525-534. doi: 10.1007/s10238-019-00576-5. Epub 2019 Aug 28.
494 Paclitaxel-based second-line therapy for patients with advanced chemotherapy-resistant bladder carcinoma (M1): a clinical Phase II study.Cancer. 1997 Aug 1;80(3):465-70. doi: 10.1002/(sici)1097-0142(19970801)80:3<465::aid-cncr14>3.0.co;2-v.
495 ARPC4 promotes bladder cancer cell invasion and is associated with lymph node metastasis.J Cell Biochem. 2020 Jan;121(1):231-243. doi: 10.1002/jcb.29136. Epub 2019 Jun 12.
496 Oxidative stress and LINE-1 reactivation in bladder cancer are epigenetically linked through active chromatin formation.Free Radic Biol Med. 2019 Apr;134:419-428. doi: 10.1016/j.freeradbiomed.2019.01.031. Epub 2019 Jan 29.
497 Suppression of CD81 promotes bladder cancer cell invasion through increased matrix metalloproteinase expression via extracellular signal-regulated kinase phosphorylation.Investig Clin Urol. 2019 Sep;60(5):396-404. doi: 10.4111/icu.2019.60.5.396. Epub 2019 Jul 17.
498 Dynamic m(6)A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis.Oncogene. 2019 Jun;38(24):4755-4772. doi: 10.1038/s41388-019-0755-0. Epub 2019 Feb 22.
499 Analysis of Gene Expression in Bladder Cancer: Possible Involvement of Mitosis and Complement and Coagulation Cascades Signaling Pathway.J Comput Biol. 2020 Jun;27(6):987-998. doi: 10.1089/cmb.2019.0237. Epub 2019 Sep 23.
500 Characterization of mRNA Expression and Endogenous RNA Profiles in Bladder Cancer Based on The Cancer Genome Atlas (TCGA) Database.Med Sci Monit. 2019 Apr 25;25:3041-3060. doi: 10.12659/MSM.915487.
501 Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.Nat Genet. 2011 Aug 7;43(9):875-8. doi: 10.1038/ng.907.
502 Sequence variants at the TERT-CLPTM1L locus associate with many cancer types.Nat Genet. 2009 Feb;41(2):221-7. doi: 10.1038/ng.296. Epub 2009 Jan 18.
503 Loss of DUSP2 predicts a poor prognosis in patients with bladder cancer.Hum Pathol. 2019 Mar;85:152-161. doi: 10.1016/j.humpath.2018.11.007. Epub 2018 Nov 17.
504 Extracellular matrix protein 1 (ECM1) is associated with carcinogenesis potential of human bladder cancer.Onco Targets Ther. 2019 Feb 20;12:1423-1432. doi: 10.2147/OTT.S191321. eCollection 2019.
505 The ERH gene regulates migration and invasion in 5637 and T24 bladder cancer cells.BMC Cancer. 2019 Mar 12;19(1):225. doi: 10.1186/s12885-019-5423-9.
506 Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation.Nat Genet. 2013 Dec;45(12):1459-63. doi: 10.1038/ng.2798. Epub 2013 Oct 13.
507 ETV5 links the FGFR3 and Hippo signalling pathways in bladder cancer.Sci Rep. 2019 Apr 5;9(1):5740. doi: 10.1038/s41598-018-36456-3.
508 FGF9 inhibition by a novel binding peptide has efficacy in gastric and bladder cancer per se and reverses resistance to cisplatin.Pharmacol Res. 2020 Feb;152:104575. doi: 10.1016/j.phrs.2019.104575. Epub 2019 Dec 2.
509 Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer progression by targeting yes-associated protein (YAP) pathway.J Cell Biochem. 2019 Apr;120(4):6471-6481. doi: 10.1002/jcb.27938. Epub 2018 Nov 11.
510 Development and Initial Testing of a Modified UroVysion-Based Fluorescence In Situ Hybridization Score for Prediction of Progression in Bladder Cancer.Am J Clin Pathol. 2020 Jan 2;153(2):274-284. doi: 10.1093/ajcp/aqz165.
511 Long Non-coding RNA DLEU1 Promotes Cell Proliferation, Invasion, and Confers Cisplatin Resistance in Bladder Cancer by Regulating the miR-99b/HS3ST3B1 Axis.Front Genet. 2019 Mar 29;10:280. doi: 10.3389/fgene.2019.00280. eCollection 2019.
512 Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer.PLoS One. 2015 Sep 2;10(9):e0137003. doi: 10.1371/journal.pone.0137003. eCollection 2015.
513 ISYNA1 is overexpressed in bladder carcinoma and regulates cell proliferation and apoptosis.Biochem Biophys Res Commun. 2019 Nov 5;519(2):246-252. doi: 10.1016/j.bbrc.2019.08.129. Epub 2019 Sep 5.
514 Keratin 6 expression correlates to areas of squamous differentiation in multiple independent isolates of As(+3)-induced bladder cancer.J Appl Toxicol. 2010 Jul;30(5):416-30. doi: 10.1002/jat.1513.
515 A six-gene prognostic model predicts overall survival in bladder cancer patients.Cancer Cell Int. 2019 Sep 5;19:229. doi: 10.1186/s12935-019-0950-7. eCollection 2019.
516 MAGE-A9 mRNA and protein expression in bladder cancer.Int J Cancer. 2007 May 15;120(10):2170-7. doi: 10.1002/ijc.22282.
517 Mediator Complex Subunit MED1 Protein Expression Is Decreased during Bladder Cancer Progression.Front Med (Lausanne). 2017 Mar 17;4:30. doi: 10.3389/fmed.2017.00030. eCollection 2017.
518 Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM.Cancer Lett. 2019 May 1;449:31-44. doi: 10.1016/j.canlet.2019.01.041. Epub 2019 Feb 10.
519 Expression and Role of Methylenetetrahydrofolate Dehydrogenase 1 Like (MTHFD1L) in Bladder Cancer.Transl Oncol. 2019 Nov;12(11):1416-1424. doi: 10.1016/j.tranon.2019.07.012. Epub 2019 Aug 8.
520 Circ_0006332 promotes growth and progression of bladder cancer by modulating MYBL2 expression via miR-143.Aging (Albany NY). 2019 Nov 22;11(22):10626-10643. doi: 10.18632/aging.102481. Epub 2019 Nov 22.
521 The Association of MYNN and TERC Gene Polymorphisms and Bladder Cancer in a Turkish Population.Urol J. 2019 Feb 21;16(1):50-55. doi: 10.22037/uj.v0i0.4083.
522 Identification and validation of an 18-gene signature highly-predictive of bladder cancer metastasis.Sci Rep. 2018 Jan 10;8(1):374. doi: 10.1038/s41598-017-18773-1.
523 Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation.Cancer Lett. 2020 Mar 31;473:118-129. doi: 10.1016/j.canlet.2019.12.018. Epub 2019 Dec 13.
524 High NRBP1 expression promotes proliferation and correlates with poor prognosis in bladder cancer.J Cancer. 2019 Jul 10;10(18):4270-4277. doi: 10.7150/jca.32656. eCollection 2019.
525 LINC00612 enhances the proliferation and invasion ability of bladder cancer cells as ceRNA by sponging miR-590 to elevate expression of PHF14.J Exp Clin Cancer Res. 2019 Apr 2;38(1):143. doi: 10.1186/s13046-019-1149-4.
526 NNT-AS1 enhances bladder cancer cell growth by targeting miR-1301-3p/PODXL axis and activating Wnt pathway.Neurourol Urodyn. 2020 Feb;39(2):547-557. doi: 10.1002/nau.24238. Epub 2019 Nov 29.
527 Prothymosin- enhances phosphatase and tensin homolog expression and binds with tripartite motif-containing protein 21 to regulate Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 signaling in human bladder cancer.Cancer Sci. 2019 Apr;110(4):1208-1219. doi: 10.1111/cas.13963. Epub 2019 Mar 5.
528 RAB14 activates MAPK signaling to promote bladder tumorigenesis.Carcinogenesis. 2019 Nov 25;40(11):1341-1351. doi: 10.1093/carcin/bgz039.
529 Long Noncoding RNA MNX1 antisense RNA 1 Exerts Oncogenic Functions in Bladder Cancer by Regulating miR-218-5p/RAB1A Axis.J Pharmacol Exp Ther. 2020 Mar;372(3):237-247. doi: 10.1124/jpet.119.262949. Epub 2019 Dec 16.
530 RAB38 promotes bladder cancer growth by promoting cell proliferation and motility.World J Urol. 2019 Sep;37(9):1889-1897. doi: 10.1007/s00345-018-2596-9. Epub 2018 Dec 10.
531 Overexpression of ribonuclease inhibitor induces autophagy in human colorectal cancer cells via the Akt/mTOR/ULK1 pathway.Mol Med Rep. 2019 May;19(5):3519-3526. doi: 10.3892/mmr.2019.10030. Epub 2019 Mar 14.
532 Long noncoding RNA LINC00319 regulates ROMO1 expression and promotes bladder cancer progression via miR-4492/ROMO1 axis.J Cell Physiol. 2020 Apr;235(4):3768-3775. doi: 10.1002/jcp.29271. Epub 2019 Oct 14.
533 MiR-506 inhibits cell proliferation, invasion, migration and epithelial-to-mesenchymal transition through targeting RWDD4 in human bladder cancer.Oncol Lett. 2019 Jan;17(1):73-78. doi: 10.3892/ol.2018.9594. Epub 2018 Oct 18.
534 p85 Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation.Neoplasia. 2019 Sep;21(9):908-920. doi: 10.1016/j.neo.2019.07.007. Epub 2019 Aug 8.
535 Serine/threonine kinase 32C is overexpressed in bladder cancer and contributes to tumor progression.Cancer Biol Ther. 2019;20(3):307-320. doi: 10.1080/15384047.2018.1529098. Epub 2018 Oct 25.
536 Increased expression levels of Syntaxin 1A and Synaptobrevin 2/Vesicle-Associated Membrane Protein-2 are associated with the progression of bladder cancer.Genet Mol Biol. 2019 Jan-Mar;42(1):40-47. doi: 10.1590/1678-4685-GMB-2017-0339. Epub 2019 Jan 21.
537 Thyrotroph embryonic factor is downregulated in bladder cancer and suppresses proliferation and tumorigenesis via the AKT/FOXOs signalling pathway.Cell Prolif. 2019 Mar;52(2):e12560. doi: 10.1111/cpr.12560. Epub 2018 Dec 4.
538 Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance.Oncotarget. 2018 Jan 13;9(17):13231-13243. doi: 10.18632/oncotarget.24229. eCollection 2018 Mar 2.
539 Rewiring E2F1 with classical NHEJ via APLF suppression promotes bladder cancer invasiveness.J Exp Clin Cancer Res. 2019 Jul 8;38(1):292. doi: 10.1186/s13046-019-1286-9.
540 Norcantharidin inhibits the DDR of bladder cancer stem-like cells through cdc6 degradation.Onco Targets Ther. 2019 Jun 7;12:4403-4413. doi: 10.2147/OTT.S209907. eCollection 2019.
541 Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis.J Hum Genet. 2018 May;63(5):657-668. doi: 10.1038/s10038-018-0437-8. Epub 2018 Mar 14.
542 Bioinformatics Analysis Identified Key Molecular Changes in Bladder Cancer Development and Recurrence.Biomed Res Int. 2019 Nov 16;2019:3917982. doi: 10.1155/2019/3917982. eCollection 2019.
543 Companied P16 genetic and protein status together providing useful information on the clinical outcome of urinary bladder cancer.Medicine (Baltimore). 2018 Apr;97(15):e0353. doi: 10.1097/MD.0000000000010353.
544 SPIRE - combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial.Trials. 2018 Apr 3;19(1):216. doi: 10.1186/s13063-018-2586-7.
545 CIZ1 knockdown suppresses the proliferation of bladder cancer cells by inducing apoptosis.Gene. 2019 Nov 30;719:143946. doi: 10.1016/j.gene.2019.143946. Epub 2019 Jun 25.
546 A DDX31/Mutant-p53/EGFR Axis Promotes Multistep Progression of Muscle-Invasive Bladder Cancer.Cancer Res. 2018 May 1;78(9):2233-2247. doi: 10.1158/0008-5472.CAN-17-2528. Epub 2018 Feb 13.
547 METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner.Mol Cancer. 2019 Jun 22;18(1):110. doi: 10.1186/s12943-019-1036-9.
548 Upregulation of NPL4 promotes bladder cancer cell proliferation by inhibiting DXO destabilization of cyclin D1 mRNA.Cancer Cell Int. 2019 May 30;19:149. doi: 10.1186/s12935-019-0874-2. eCollection 2019.
549 E74 like ETS transcription factor 3 (ELF3) is a negative regulator of epithelial- mesenchymal transition in bladder carcinoma.Cancer Biomark. 2019;25(2):223-232. doi: 10.3233/CBM-190013.
550 Exosomal MicroRNA-9-3p Secreted from BMSCs Downregulates ESM1 to Suppress the Development of Bladder Cancer.Mol Ther Nucleic Acids. 2019 Dec 6;18:787-800. doi: 10.1016/j.omtn.2019.09.023. Epub 2019 Oct 1.
551 Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis.Mol Cancer. 2019 May 17;18(1):95. doi: 10.1186/s12943-019-1025-z.
552 GPX2 promotes development of bladder cancer with squamous cell differentiation through the control of apoptosis.Oncotarget. 2018 Mar 23;9(22):15847-15859. doi: 10.18632/oncotarget.24627. eCollection 2018 Mar 23.
553 The Expression and Prognostic Impact of Immune Cytolytic Activity-Related Markers in Human Malignancies: A Comprehensive Meta-analysis.Front Oncol. 2018 Feb 21;8:27. doi: 10.3389/fonc.2018.00027. eCollection 2018.
554 Homeobox A10 promotes the proliferation and invasion of bladder cancer cells via regulation of matrix metalloproteinase-3.Oncol Lett. 2019 Jul;18(1):49-56. doi: 10.3892/ol.2019.10312. Epub 2019 May 3.
555 HOXB2 is a Putative Tumour Promotor in Human Bladder Cancer.Anticancer Res. 2019 Dec;39(12):6915-6921. doi: 10.21873/anticanres.13912.
556 HSDL2 Promotes Bladder Cancer Growth In Vitro and In Vivo.Int J Med Sci. 2019 May 7;16(5):654-659. doi: 10.7150/ijms.31288. eCollection 2019.
557 The roles and mechanism of IFIT5 in bladder cancer epithelial-mesenchymal transition and progression.Cell Death Dis. 2019 Jun 4;10(6):437. doi: 10.1038/s41419-019-1669-z.
558 Kinesin family member 3A stimulates cell proliferation, migration, and invasion of bladder cancer cells invitro and invivo.FEBS Open Bio. 2021 May;11(5):1487-1496. doi: 10.1002/2211-5463.12768. Epub 2021 May 2.
559 Kinesin family member C1 accelerates bladder cancer cell proliferation and induces epithelial-mesenchymal transition via Akt/GSK3 signaling.Cancer Sci. 2019 Sep;110(9):2822-2833. doi: 10.1111/cas.14126. Epub 2019 Jul 23.
560 CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9.Aging (Albany NY). 2019 Dec 10;11(23):11314-11328. doi: 10.18632/aging.102530. Epub 2019 Dec 10.
561 Enhanced metastatic potential in the MB49 urothelial carcinoma model.Sci Rep. 2019 May 15;9(1):7425. doi: 10.1038/s41598-019-43641-5.
562 LHPP suppresses bladder cancer cell proliferation and growth via inactivating AKT/p65 signaling pathway.Biosci Rep. 2019 Jul 30;39(7):BSR20182270. doi: 10.1042/BSR20182270. Print 2019 Jul 31.
563 Clinicopathological Profiling of LC3B, an Autophagy Marker, and ESRRA (Estrogen-related Receptor-alpha) in Muscle-invasive Bladder Cancer.Anticancer Res. 2018 Apr;38(4):2429-2437. doi: 10.21873/anticanres.12495.
564 ciRs-6 upregulates March1 to suppress bladder cancer growth by sponging miR-653.Aging (Albany NY). 2019 Dec 10;11(23):11202-11223. doi: 10.18632/aging.102525. Epub 2019 Dec 10.
565 MEX3C regulates lipid metabolism to promote bladder tumorigenesis through JNK pathway.Onco Targets Ther. 2019 May 1;12:3285-3294. doi: 10.2147/OTT.S199667. eCollection 2019.
566 miR?2?p enhances multichemoresistance by targeting NET1 in bladder cancer cells.Oncol Rep. 2018 Jun;39(6):2731-2740. doi: 10.3892/or.2018.6355. Epub 2018 Apr 4.
567 A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging.Nat Commun. 2019 Oct 24;10(1):4861. doi: 10.1038/s41467-019-12848-5.
568 Antitumor effects of MutT homolog 1 inhibitors in human bladder cancer cells.Biosci Biotechnol Biochem. 2019 Dec;83(12):2265-2271. doi: 10.1080/09168451.2019.1648207. Epub 2019 Jul 31.
569 NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation.Theranostics. 2019 Sep 23;9(24):7156-7167. doi: 10.7150/thno.36030. eCollection 2019.
570 Peptidyl Arginine Deiminase, Type II (PADI2) Is Involved in Urothelial Bladder Cancer.Pathol Oncol Res. 2020 Apr;26(2):1279-1285. doi: 10.1007/s12253-019-00687-0. Epub 2019 Jul 2.
571 KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis.Cancer Cell Int. 2019 Dec 3;19:325. doi: 10.1186/s12935-019-1039-z. eCollection 2019.
572 PCMT1 is an unfavorable predictor and functions as an oncogene in bladder cancer.IUBMB Life. 2018 Apr;70(4):291-299. doi: 10.1002/iub.1717. Epub 2018 Mar 8.
573 MKAD-21 Suppresses the Oncogenic Activity of the miR-21/PPP2R2A/ERK Molecular Network in Bladder Cancer.Mol Cancer Ther. 2018 Jul;17(7):1430-1440. doi: 10.1158/1535-7163.MCT-17-1049. Epub 2018 Apr 27.
574 RASSF6 Is Downregulated In Human Bladder Cancers And Regulates Doxorubicin Sensitivity And Mitochondrial Membrane Potential Via The Hippo Signaling Pathway.Onco Targets Ther. 2019 Nov 5;12:9189-9200. doi: 10.2147/OTT.S217041. eCollection 2019.
575 Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/-catenin feedback loop.FASEB J. 2019 Oct;33(10):10973-10985. doi: 10.1096/fj.201900537R. Epub 2019 Jul 18.
576 Regulator of G protein signaling 20 promotes proliferation and migration in bladder cancer via NF-B signaling.Biomed Pharmacother. 2019 Sep;117:109112. doi: 10.1016/j.biopha.2019.109112. Epub 2019 Jun 15.
577 Adseverin modulates morphology and invasive function of MCF7 cells.Biochim Biophys Acta Mol Basis Dis. 2019 Oct 1;1865(10):2716-2725. doi: 10.1016/j.bbadis.2019.07.015. Epub 2019 Jul 29.
578 SEC11A Expression Is Associated with Basal-Like Bladder Cancer and Predicts Patient Survival.Pathobiology. 2019;86(4):208-216. doi: 10.1159/000497206. Epub 2019 Jun 4.
579 CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis.Cancer Sci. 2018 May;109(5):1723-1730. doi: 10.1111/cas.13565. Epub 2018 Apr 14.
580 Knockdown of SLC35F2 Inhibits the Proliferation and Metastasis of Bladder Cancer Cells.Onco Targets Ther. 2019 Dec 10;12:10771-10786. doi: 10.2147/OTT.S229332. eCollection 2019.
581 The role of SOX18 in bladder cancer and its underlying mechanism in mediating cellular functions.Life Sci. 2019 Sep 1;232:116614. doi: 10.1016/j.lfs.2019.116614. Epub 2019 Jun 28.
582 MiRNA-616 aggravates the progression of bladder cancer by regulating cell proliferation, migration and apoptosis through downregulating SOX7.Eur Rev Med Pharmacol Sci. 2019 Nov;23(21):9304-9312. doi: 10.26355/eurrev_201911_19423.
583 STIP1 Tissue Expression Is Associated with Survival in Chemotherapy-Treated Bladder Cancer Patients.Pathol Oncol Res. 2020 Apr;26(2):1243-1249. doi: 10.1007/s12253-019-00689-y. Epub 2019 Jun 27.
584 Repression of transcription factor AP-2 alpha by PPAR reveals a novel transcriptional circuit in basal-squamous bladder cancer.Oncogenesis. 2019 Nov 26;8(12):69. doi: 10.1038/s41389-019-0178-3.
585 The Pathological Significance and Prognostic Roles of Thrombospondin-1, and -2, and 4N1K-peptide in Bladder Cancer.Anticancer Res. 2019 May;39(5):2317-2324. doi: 10.21873/anticanres.13348.
586 Overexpression of thymosin 10 correlates with disease progression and poor prognosis in bladder cancer.Exp Ther Med. 2019 Nov;18(5):3759-3766. doi: 10.3892/etm.2019.8006. Epub 2019 Sep 13.
587 The epigenetically regulated effects of Wnt antagonists on the expression of genes in the apoptosis pathway in human bladder cancer cell line (T24).DNA Cell Biol. 2014 Jul;33(7):408-17. doi: 10.1089/dna.2013.2285. Epub 2014 Mar 25.
588 Mass spectrometric detection combined with bioinformatic analysis identified possible protein markers and key pathways associated with bladder cancer.Gene. 2017 Aug 30;626:407-413. doi: 10.1016/j.gene.2017.05.054. Epub 2017 May 25.
589 Increased expression of -actinin-4 is associated with unfavorable pathological features and invasiveness of bladder cancer.Oncol Rep. 2013 Sep;30(3):1073-80. doi: 10.3892/or.2013.2577. Epub 2013 Jul 1.
590 ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer.PLoS One. 2016 Mar 1;11(3):e0150138. doi: 10.1371/journal.pone.0150138. eCollection 2016.
591 Deregulation of Rab and Rab effector genes in bladder cancer.PLoS One. 2012;7(6):e39469. doi: 10.1371/journal.pone.0039469. Epub 2012 Jun 19.
592 EIF2C, Dicer, and Drosha are up-regulated along tumor progression and associated with poor prognosis in bladder carcinoma.Tumour Biol. 2015 Jul;36(7):5071-9. doi: 10.1007/s13277-015-3158-z. Epub 2015 Feb 6.
593 An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers.EMBO Mol Med. 2018 Apr;10(4):e8163. doi: 10.15252/emmm.201708163.
594 Loss of ABH antigen expression in bladder cancer is not caused by loss of heterozygosity of the ABO locus.Int J Cancer. 1995 Nov 3;63(3):341-4. doi: 10.1002/ijc.2910630306.
595 ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression.Cancer Sci. 2013 Mar;104(3):321-7. doi: 10.1111/cas.12089. Epub 2013 Feb 14.
596 ALKBH3 contributes to survival and angiogenesis of human urothelial carcinoma cells through NADPH oxidase and tweak/Fn14/VEGF signals.Clin Cancer Res. 2012 Oct 1;18(19):5247-55. doi: 10.1158/1078-0432.CCR-12-0955. Epub 2012 Jul 31.
597 ALKBH8 promotes bladder cancer growth and progression through regulating the expression of survivin.Biochem Biophys Res Commun. 2016 Aug 26;477(3):413-8. doi: 10.1016/j.bbrc.2016.06.084. Epub 2016 Jun 18.
598 Antitumor activity of sulfated hyaluronic acid fragments in pre-clinical models of bladder cancer.Oncotarget. 2017 Apr 11;8(15):24262-24274. doi: 10.18632/oncotarget.10529.
599 Multitarget fluorescence in situ hybridization and melanoma antigen genes analysis in primary bladder carcinoma.Cancer Genet Cytogenet. 2006 Jan 1;164(1):32-8. doi: 10.1016/j.cancergencyto.2005.06.006.
600 Cross-species analysis of the canine and human bladder cancer transcriptome and exome.Genes Chromosomes Cancer. 2017 Apr;56(4):328-343. doi: 10.1002/gcc.22441. Epub 2017 Jan 25.
601 Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition.Mol Oncol. 2019 Jul;13(7):1559-1576. doi: 10.1002/1878-0261.12523. Epub 2019 Jun 9.
602 Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors.Nat Genet. 2016 Nov;48(11):1330-1338. doi: 10.1038/ng.3670. Epub 2016 Sep 19.
603 Expression of p53 family genes in urinary bladder cancer: correlation with disease aggressiveness and recurrence.Tumour Biol. 2014 Mar;35(3):2481-9. doi: 10.1007/s13277-013-1328-4. Epub 2013 Nov 11.
604 Immunocytochemistry for ARID1A as a potential biomarker in urine cytology of bladder cancer.Cancer Cytopathol. 2019 Sep;127(9):578-585. doi: 10.1002/cncy.22167. Epub 2019 Aug 6.
605 Expression of ARID1B Is Associated With Poor Outcomes and Predicts the Benefit from Adjuvant Chemotherapy in Bladder Urothelial Carcinoma.J Cancer. 2017 Sep 27;8(17):3490-3497. doi: 10.7150/jca.19109. eCollection 2017.
606 Single nucleotide polymorphism of the JWA gene is associated with risk of leukemia: a case-control study in a Chinese population.J Toxicol Environ Health A. 2007 Jun;70(11):895-900. doi: 10.1080/15287390701285956.
607 Silencing of Armadillo Repeat-Containing Protein 8 (ARMc8) Inhibits TGF--Induced EMT in Bladder Carcinoma UMUC3 Cells.Oncol Res. 2017 Jan 2;25(1):99-105. doi: 10.3727/096504016X14719078133609.
608 Overexpression of the ASPM gene is associated with aggressiveness and poor outcome in bladder cancer.Oncol Lett. 2019 Feb;17(2):1865-1876. doi: 10.3892/ol.2018.9762. Epub 2018 Nov 26.
609 Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism.Theranostics. 2018 Aug 10;8(16):4520-4534. doi: 10.7150/thno.25130. eCollection 2018.
610 ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signaling.Endocr Connect. 2018 Dec 1;7(12):1397-1408. doi: 10.1530/EC-18-0364.
611 Association between AXIN1 Gene Polymorphisms and Bladder Cancer in Chinese Han Population.Dis Markers. 2019 Apr 15;2019:3949343. doi: 10.1155/2019/3949343. eCollection 2019.
612 B4GALT1 expression predicts prognosis and adjuvant chemotherapy benefits in muscle-invasive bladder cancer patients.BMC Cancer. 2018 May 24;18(1):590. doi: 10.1186/s12885-018-4497-0.
613 Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer.Aging (Albany NY). 2018 Oct 12;10(10):2606-2623. doi: 10.18632/aging.101573.
614 BAMBI gene is epigenetically silenced in subset of high-grade bladder cancer.Int J Cancer. 2009 Jul 15;125(2):328-38. doi: 10.1002/ijc.24318.
615 The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis.J Biomed Sci. 2017 Aug 26;24(1):61. doi: 10.1186/s12929-017-0360-x.
616 BCAN Think Tank session 2: Molecular detection of bladder cancer: the path to progress.Urol Oncol. 2010 May-Jun;28(3):334-7. doi: 10.1016/j.urolonc.2009.07.026.
617 Acquisition of the metastatic phenotype is accompanied by H2O2-dependent activation of the p130Cas signaling complex.Mol Cancer Res. 2013 Mar;11(3):303-12. doi: 10.1158/1541-7786.MCR-12-0478. Epub 2013 Jan 23.
618 Multitarget siRNA inhibition of antiapoptotic genes (XIAP, BCL2, BCL-X(L)) in bladder cancer cells.Anticancer Res. 2008 Jul-Aug;28(4B):2259-63.
619 Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer.PLoS One. 2017 Nov 30;12(11):e0188827. doi: 10.1371/journal.pone.0188827. eCollection 2017.
620 Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer.J Exp Clin Cancer Res. 2017 Jun 9;36(1):77. doi: 10.1186/s13046-017-0542-0.
621 Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis.Aging (Albany NY). 2018 Aug 9;10(8):1964-1976. doi: 10.18632/aging.101520.
622 The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines.Clin Exp Metastasis. 2000;18(6):519-25. doi: 10.1023/a:1011819621859.
623 BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells.Cancer Med. 2018 Jan;7(1):184-195. doi: 10.1002/cam4.1263. Epub 2017 Dec 13.
624 Lost expression of cell adhesion molecule 1 is associated with bladder cancer progression and recurrence and its overexpression inhibited tumor cell malignant behaviors.Oncol Lett. 2019 Feb;17(2):2047-2056. doi: 10.3892/ol.2018.9845. Epub 2018 Dec 18.
625 Suppression of human bladder cancer growth by increased expression of C-CAM1 gene in an orthotopic model.Cancer Res. 1996 Aug 1;56(15):3431-5.
626 The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer.Cancer Gene Ther. 2020 Apr;27(3-4):189-202. doi: 10.1038/s41417-019-0085-y. Epub 2019 Feb 6.
627 Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.Cancer Lett. 2000 Oct 31;159(2):127-34. doi: 10.1016/s0304-3835(00)00522-x.
628 Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments.Cancer Epidemiol Biomarkers Prev. 2011 Jul;20(7):1483-91. doi: 10.1158/1055-9965.EPI-11-0067. Epub 2011 May 17.
629 CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration.Oncotarget. 2015 Sep 22;6(28):25856-67. doi: 10.18632/oncotarget.4624.
630 Long noncoding RNAGAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (CC motif) ligand 1 expression.Mol Med Rep. 2016 Jan;13(1):27-34. doi: 10.3892/mmr.2015.4503. Epub 2015 Nov 5.
631 Establishment and characterization of two human bladder cancer cell lines.Hum Cell. 1996 Mar;9(1):49-56.
632 NOV is upregulated and promotes migration and invasion in bladder cancer.Tumour Biol. 2014 Jul;35(7):6749-55. doi: 10.1007/s13277-014-1919-8. Epub 2014 Apr 10.
633 The ubiquitin-specific protease USP2a enhances tumor progression by targeting cyclin A1 in bladder cancer.Cell Cycle. 2012 Mar 15;11(6):1123-30. doi: 10.4161/cc.11.6.19550. Epub 2012 Mar 15.
634 The decrease of cyclin B2 expression inhibits invasion and metastasis of bladder cancer.Urol Oncol. 2016 May;34(5):237.e1-10. doi: 10.1016/j.urolonc.2015.11.011. Epub 2015 Dec 17.
635 High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk.Carcinogenesis. 2007 Oct;28(10):2160-5. doi: 10.1093/carcin/bgm167. Epub 2007 Aug 29.
636 Rs6265 polymorphism in brain-derived neurotrophic factor (Val/Val and Val/Met) promotes proliferation of bladder cancer cells by suppressing microRNA-205 and enhancing expression of cyclin J.J Cell Biochem. 2019 May;120(5):7297-7308. doi: 10.1002/jcb.28004. Epub 2018 Nov 1.
637 CD164 promotes tumor progression and predicts the poor prognosis of bladder cancer.Cancer Med. 2018 Aug;7(8):3763-3772. doi: 10.1002/cam4.1607. Epub 2018 Jul 18.
638 Automated quantification of FISH signals in urinary cells enables the assessment of chromosomal aberration patterns characteristic for bladder cancer.Biochem Biophys Res Commun. 2014 Jun 13;448(4):467-72. doi: 10.1016/j.bbrc.2014.04.137. Epub 2014 May 4.
639 Hypermethylation of E-cadherin, p16, p14, and RASSF1A genes in pathologically normal urothelium predict bladder recurrence of bladder cancer after transurethral resection.Urol Oncol. 2012 Mar-Apr;30(2):177-81. doi: 10.1016/j.urolonc.2010.01.002. Epub 2010 Aug 25.
640 Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification.Oncogene. 2008 Apr 24;27(19):2716-27. doi: 10.1038/sj.onc.1210934. Epub 2007 Nov 26.
641 Hsa-miR-429 promotes bladder cancer cell proliferation via inhibiting CDKN2B.Oncotarget. 2017 Aug 3;8(40):68721-68729. doi: 10.18632/oncotarget.19878. eCollection 2017 Sep 15.
642 Centromere protein U is a potential target for gene therapy of human bladder cancer.Oncol Rep. 2017 Aug;38(2):735-744. doi: 10.3892/or.2017.5769. Epub 2017 Jun 30.
643 Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/Myd88 via MAPK signaling pathway.Int J Cancer. 2019 Oct 15;145(8):2170-2181. doi: 10.1002/ijc.32311. Epub 2019 May 30.
644 miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2.Gene. 2019 Jun 15;701:23-31. doi: 10.1016/j.gene.2019.02.083. Epub 2019 Mar 19.
645 Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression.Biochem Biophys Res Commun. 2018 Dec 9;507(1-4):231-235. doi: 10.1016/j.bbrc.2018.11.013. Epub 2018 Nov 12.
646 Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine.Biosens Bioelectron. 2018 Oct 15;117:620-627. doi: 10.1016/j.bios.2018.07.003. Epub 2018 Jul 3.
647 miR-182-5p affects human bladder cancer cell proliferation, migration and invasion through regulating Cofilin 1.Cancer Cell Int. 2019 Feb 28;19:42. doi: 10.1186/s12935-019-0758-5. eCollection 2019.
648 Decreased expression of p57(KIP2)mRNA in human bladder cancer.Br J Cancer. 2000 Sep;83(5):626-31. doi: 10.1054/bjoc.2000.1298.
649 CIP2A depletion potentiates the chemosensitivity of cisplatin by inducing increased apoptosis in bladder cancer cells.Oncol Rep. 2018 Nov;40(5):2445-2454. doi: 10.3892/or.2018.6641. Epub 2018 Aug 10.
650 Cyclin-dependent kinase-associated protein Cks2 is associated with bladder cancer progression.J Int Med Res. 2011;39(2):533-40. doi: 10.1177/147323001103900222.
651 CLASP2 is involved in the EMT and early progression after transurethral resection of the bladder tumor.BMC Cancer. 2017 Feb 6;17(1):105. doi: 10.1186/s12885-017-3101-3.
652 Correction: CLCA4 inhibits bladder cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT pathway.Oncotarget. 2019 Jan 29;10(9):1010. doi: 10.18632/oncotarget.26656. eCollection 2019 Jan 29.
653 CLT1 targets bladder cancer through integrin 51 and CLIC3.Mol Cancer Res. 2013 Feb;11(2):194-203. doi: 10.1158/1541-7786.MCR-12-0300. Epub 2012 Nov 30.
654 Functional characterization of the tumor suppressor CMTM8 and its association with prognosis in bladder cancer.Tumour Biol. 2016 May;37(5):6217-25. doi: 10.1007/s13277-015-4508-6. Epub 2015 Nov 28.
655 Risk score based on three mRNA expression predicts the survival of bladder cancer.Oncotarget. 2017 Jun 27;8(37):61583-61591. doi: 10.18632/oncotarget.18642. eCollection 2017 Sep 22.
656 Collagen type IV alpha 1 (COL4A1) and collagen type XIII alpha 1 (COL13A1) produced in cancer cells promote tumor budding at the invasion front in human urothelial carcinoma of the bladder.Oncotarget. 2017 May 30;8(22):36099-36114. doi: 10.18632/oncotarget.16432.
657 The clinical significance of COL5A2 in patients with bladder cancer: A retrospective analysis of bladder cancer gene expression data.Medicine (Baltimore). 2018 Mar;97(10):e0091. doi: 10.1097/MD.0000000000010091.
658 High expression of constitutive photomorphogenic 1 (COP1) is associated with poor prognosis in bladder cancer.Tumour Biol. 2016 Jul;37(7):8917-22. doi: 10.1007/s13277-015-4765-4. Epub 2016 Jan 11.
659 Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers.Breast Cancer Res. 2016 Jan 25;18(1):12. doi: 10.1186/s13058-016-0672-x.
660 The role of CT10 regulation of kinase-like in cancer.Future Oncol. 2014 Dec;10(16):2687-97. doi: 10.2217/fon.14.199.
661 Bladder cancer stage and outcome by array-based comparative genomic hybridization.Clin Cancer Res. 2005 Oct 1;11(19 Pt 1):7012-22. doi: 10.1158/1078-0432.CCR-05-0177.
662 The prognostic value of E-cadherin, alpha-, beta- and gamma-catenin in bladder cancer patients who underwent radical cystectomy.Int J Urol. 2007 Sep;14(9):789-94. doi: 10.1111/j.1442-2042.2007.01830.x.
663 Dysregulated genes targeted by microRNAs and metabolic pathways in bladder cancer revealed by bioinformatics methods.Oncol Lett. 2018 Jun;15(6):9617-9624. doi: 10.3892/ol.2018.8602. Epub 2018 Apr 27.
664 CUL4B promotes bladder cancer metastasis and induces epithelial-to-mesenchymal transition by activating the Wnt/-catenin signaling pathway.Oncotarget. 2017 Aug 24;8(44):77241-77253. doi: 10.18632/oncotarget.20455. eCollection 2017 Sep 29.
665 Genome-Wide Association Study of Bladder Cancer in a Chinese Cohort Reveals a New Susceptibility Locus at 5q12.3.Cancer Res. 2016 Jun 1;76(11):3277-84. doi: 10.1158/0008-5472.CAN-15-2564. Epub 2016 Mar 29.
666 CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-B pathway.Biochem Biophys Res Commun. 2018 Apr 15;498(4):862-868. doi: 10.1016/j.bbrc.2018.03.071. Epub 2018 Mar 17.
667 Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer.Cancer Res. 2008 Feb 1;68(3):700-6. doi: 10.1158/0008-5472.CAN-07-5532.
668 Estrogen receptor promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals.Exp Mol Med. 2018 Nov 20;50(11):1-11. doi: 10.1038/s12276-018-0155-5.
669 DAPK Promoter Methylation and Bladder Cancer Risk: A Systematic Review and Meta-Analysis.PLoS One. 2016 Dec 1;11(12):e0167228. doi: 10.1371/journal.pone.0167228. eCollection 2016.
670 The prognostic significance of DAPK1 in bladder cancer.PLoS One. 2017 Apr 7;12(4):e0175290. doi: 10.1371/journal.pone.0175290. eCollection 2017.
671 Drebrin at Junctional Plaques.Adv Exp Med Biol. 2017;1006:313-328. doi: 10.1007/978-4-431-56550-5_18.
672 Use of yeast chemigenomics and COXEN informatics in preclinical evaluation of anticancer agents.Neoplasia. 2011 Jan;13(1):72-80. doi: 10.1593/neo.101214.
673 Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.Carcinogenesis. 2018 Mar 8;39(3):482-492. doi: 10.1093/carcin/bgy015.
674 DCAMKL1 is associated with the malignant status and poor outcome in bladder cancer.Tumour Biol. 2017 Jun;39(6):1010428317703822. doi: 10.1177/1010428317703822.
675 Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer.Cancer Res. 2008 Apr 1;68(7):2530-7. doi: 10.1158/0008-5472.CAN-07-5991.
676 DDX39 acts as a suppressor of invasion for bladder cancer.Cancer Sci. 2012 Jul;103(7):1363-9. doi: 10.1111/j.1349-7006.2012.02298.x. Epub 2012 Jun 4.
677 miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD.Oncol Rep. 2017 Feb;37(2):1123-1131. doi: 10.3892/or.2016.5326. Epub 2016 Dec 16.
678 Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling.Oncotarget. 2017 Mar 7;8(10):17059-17069. doi: 10.18632/oncotarget.15001.
679 Methylation-mediated silencing of Dlg5 facilitates bladder cancer metastasis.Exp Cell Res. 2015 Feb 15;331(2):399-407. doi: 10.1016/j.yexcr.2014.11.015. Epub 2014 Dec 3.
680 Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis.Clin Biochem. 2014 Jan;47(1-2):104-10. doi: 10.1016/j.clinbiochem.2013.10.022. Epub 2013 Oct 29.
681 Detection of deleted in malignant brain tumors 1 and runt-related transcription factor 3 gene expressions in bladder carcinoma.Mol Biol Rep. 2012 Apr;39(4):4691-5. doi: 10.1007/s11033-011-1261-9. Epub 2011 Sep 29.
682 Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.Oncogene. 2017 Jan 5;36(1):35-46. doi: 10.1038/onc.2016.172. Epub 2016 Jun 6.
683 MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1.Oncotarget. 2015 Jun 30;6(18):16043-58. doi: 10.18632/oncotarget.3755.
684 Luteolin induces N-acetylation and DNA adduct of 2-aminofluorene accompanying N-acetyltransferase activity and gene expression in human bladder cancer T24 cell line.Anticancer Res. 2003 Jan-Feb;23(1A):355-62.
685 BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells.Cancer Med. 2019 Aug;8(10):4792-4805. doi: 10.1002/cam4.2385. Epub 2019 Jun 28.
686 Analysis of the expression of biomarkers in urinary bladder cancer using a tissue microarray.Mol Carcinog. 2008 Sep;47(9):678-85. doi: 10.1002/mc.20420.
687 Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk.PLoS One. 2013 Nov 28;8(11):e81524. doi: 10.1371/journal.pone.0081524. eCollection 2013.
688 DUOX2 promotes the elimination of the Klebsiella pneumoniae strainK5 from T24 cells through the reactive oxygen species pathway.Int J Mol Med. 2015 Aug;36(2):551-8. doi: 10.3892/ijmm.2015.2234. Epub 2015 Jun 3.
689 E2F4 Program Is Predictive of Progression and Intravesical Immunotherapy Efficacy in Bladder Cancer.Mol Cancer Res. 2015 Sep;13(9):1316-24. doi: 10.1158/1541-7786.MCR-15-0120. Epub 2015 Jun 1.
690 EBAG9 is a tumor-promoting and prognostic factor for bladder cancer.Int J Cancer. 2009 Feb 15;124(4):799-805. doi: 10.1002/ijc.23982.
691 Silencing of ECHDC1 inhibits growth of gemcitabine-resistant bladder cancer cells.Oncol Lett. 2018 Jan;15(1):522-527. doi: 10.3892/ol.2017.7269. Epub 2017 Oct 26.
692 Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression.J Urol. 2014 Aug;192(2):583-92. doi: 10.1016/j.juro.2014.02.035. Epub 2014 Feb 14.
693 Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer.Int J Cancer. 2015 Feb 1;136(3):709-20. doi: 10.1002/ijc.29022. Epub 2014 Jul 22.
694 Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer.Sci Rep. 2018 Jan 24;8(1):1539. doi: 10.1038/s41598-018-19788-y.
695 Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy.World J Surg Oncol. 2017 Mar 20;15(1):66. doi: 10.1186/s12957-017-1125-4.
696 Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization.Clin Cancer Res. 2013 Jun 1;19(11):2850-60. doi: 10.1158/1078-0432.CCR-12-3084. Epub 2013 Apr 10.
697 Common and differentially expressed long noncoding RNAs for the characterization of high and low grade bladder cancer.Gene. 2016 Oct 30;592(1):78-85. doi: 10.1016/j.gene.2016.07.042. Epub 2016 Jul 20.
698 Expression of Phospho-ELK1 and Its Prognostic Significance in Urothelial Carcinoma of the Upper Urinary Tract.Int J Mol Sci. 2018 Mar 8;19(3):777. doi: 10.3390/ijms19030777.
699 Repression of engrailed 2 inhibits the proliferation and invasion of human bladder cancer in vitro and in vivo.Oncol Rep. 2015 May;33(5):2319-30. doi: 10.3892/or.2015.3858. Epub 2015 Mar 17.
700 Increased neuron specific enolase expression by urothelial cells exposed to or malignantly transformed by exposure to Cd?? or As??. Toxicol Lett. 2012 Jul 7;212(1):66-74. doi: 10.1016/j.toxlet.2012.05.003. Epub 2012 May 14.
701 Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors.Nat Genet. 2016 Jun;48(6):600-606. doi: 10.1038/ng.3557. Epub 2016 Apr 25.
702 Increased expression of ESCO1 is correlated with poor patient survival and its role in human bladder cancer.Tumour Biol. 2016 Apr;37(4):5165-70. doi: 10.1007/s13277-015-4375-1. Epub 2015 Nov 7.
703 Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells.Cancer Invest. 2008 Aug;26(7):725-33. doi: 10.1080/07357900801941845.
704 Transcriptional regulatory networks in human lung adenocarcinoma.Mol Med Rep. 2012 Nov;6(5):961-6. doi: 10.3892/mmr.2012.1034. Epub 2012 Aug 14.
705 OIP5 Promotes Growth, Metastasis and Chemoresistance to Cisplatin in Bladder Cancer Cells.J Cancer. 2018 Nov 24;9(24):4684-4695. doi: 10.7150/jca.27381. eCollection 2018.
706 Diagnostic value of combined IQGAP3/BMP4 and IQGAP3/FAM107A expression ratios in urinary cell-free DNA for discriminating bladder cancer from hematuria.Urol Oncol. 2019 Jan;37(1):86-96. doi: 10.1016/j.urolonc.2018.10.023. Epub 2018 Nov 13.
707 Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.Toxins (Basel). 2016 Jul 8;8(7):211. doi: 10.3390/toxins8070211.
708 Fibulin-1 is epigenetically down-regulated and related with bladder cancer recurrence.BMC Cancer. 2014 Sep 18;14:677. doi: 10.1186/1471-2407-14-677.
709 Fibulin-5 is down-regulated in urothelial carcinoma of bladder and inhibits growth and invasion of human bladder cancer cell line 5637.Urol Oncol. 2011 Jul-Aug;29(4):430-5. doi: 10.1016/j.urolonc.2009.06.004. Epub 2009 Sep 19.
710 Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis.J Natl Cancer Inst. 2011 Sep 7;103(17):1323-37. doi: 10.1093/jnci/djr290. Epub 2011 Aug 10.
711 Prognostic value of Kindlin-2 expression in patients with solid tumors: a meta-analysis.Cancer Cell Int. 2018 Oct 22;18:166. doi: 10.1186/s12935-018-0651-7. eCollection 2018.
712 Molecular genetics of bladder cancer: targets for diagnosis and therapy.J Exp Clin Cancer Res. 2006 Jun;25(2):145-60.
713 Loss of Fezf2 promotes malignant progression of bladder cancer by regulating the NF-B signaling pathway.Lab Invest. 2018 Sep;98(9):1225-1236. doi: 10.1038/s41374-018-0077-9. Epub 2018 Jun 20.
714 Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1.Signal Transduct Target Ther. 2017;2:16045-. doi: 10.1038/sigtrans.2016.45. Epub 2017 Mar 17.
715 The evolving understanding of microRNA in bladder cancer.Urol Oncol. 2014 Jan;32(1):41.e31-40. doi: 10.1016/j.urolonc.2013.04.014. Epub 2013 Aug 2.
716 MiR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1.Am J Cancer Res. 2017 Aug 1;7(8):1738-1753. eCollection 2017.
717 Measurement of Urinary Level of a Specific Competing endogenous RNA network (FOS and RCAN mRNA/ miR-324-5p, miR-4738-3p, /lncRNA miR-497-HG) Enables Diagnosis of Bladder Cancer.Urol Oncol. 2019 Apr;37(4):292.e19-292.e27. doi: 10.1016/j.urolonc.2018.12.024. Epub 2019 Jan 14.
718 Hypermethylation of FOXA1 and allelic loss of PTEN drive squamous differentiation and promote heterogeneity in bladder cancer.Oncogene. 2020 Feb;39(6):1302-1317. doi: 10.1038/s41388-019-1063-4. Epub 2019 Oct 21.
719 On a FOX hunt: functions of FOX transcriptional regulators in bladder cancer.Nat Rev Urol. 2017 Feb;14(2):98-106. doi: 10.1038/nrurol.2016.239. Epub 2016 Nov 29.
720 Forkhead box O-class 1 and forkhead box G1 as prognostic markers for bladder cancer.J Korean Med Sci. 2009 Jun;24(3):468-73. doi: 10.3346/jkms.2009.24.3.468. Epub 2009 Jun 12.
721 FOXJ1 promotes bladder cancer cell growth and regulates Warburg effect.Biochem Biophys Res Commun. 2018 Jan 1;495(1):988-994. doi: 10.1016/j.bbrc.2017.11.063. Epub 2017 Nov 10.
722 Correlations of Foxo3 and Foxo4 expressions with clinicopathological features and prognosis of bladder cancer.Pathol Res Pract. 2017 Jul;213(7):766-772. doi: 10.1016/j.prp.2017.04.004. Epub 2017 Apr 20.
723 MiR-1-3p inhibits cell proliferation and invasion by regulating BDNF-TrkB signaling pathway in bladder cancer.Neoplasma. 2018;65(1):89-96. doi: 10.4149/neo_2018_161128N594.
724 Knockdown of fibrous sheath interacting protein 1 expression reduces bladder urothelial carcinoma cell proliferation and induces apoptosis via inhibition of the PI3K/AKT pathway.Onco Targets Ther. 2018 Apr 5;11:1961-1971. doi: 10.2147/OTT.S158275. eCollection 2018.
725 MicroRNA-101 inhibits cell migration and invasion in bladder cancer via targeting FZD4.Exp Ther Med. 2019 Feb;17(2):1476-1485. doi: 10.3892/etm.2018.7084. Epub 2018 Dec 11.
726 GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer.Onco Targets Ther. 2019 Sep 16;12:7591-7599. doi: 10.2147/OTT.S222223. eCollection 2019.
727 A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma.J Exp Med. 1995 Sep 1;182(3):689-98. doi: 10.1084/jem.182.3.689.
728 Evidence for two tumor suppressor loci associated with proximal chromosome 9p to q and distal chromosome 9q in bladder cancer and the initial screening for GAS1 and PTC mutations.Cancer Res. 1996 Nov 1;56(21):5039-43.
729 Puerarin Inhibits Proliferation and Induces Apoptosis by Upregulation of miR-16 in Bladder Cancer Cell Line T24.Oncol Res. 2018 Sep 14;26(8):1227-1234. doi: 10.3727/096504018X15178736525106. Epub 2018 Feb 8.
730 Growth differentiation factor-9 expression is inversely correlated with an aggressive behaviour in human bladder cancer cells.Int J Mol Med. 2012 Mar;29(3):428-34. doi: 10.3892/ijmm.2011.858. Epub 2011 Dec 12.
731 SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer.Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14884-9. doi: 10.1073/pnas.0902042106. Epub 2009 Aug 17.
732 Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer.Jpn J Clin Oncol. 2015 Nov;45(11):1055-63. doi: 10.1093/jjco/hyv132. Epub 2015 Sep 14.
733 Association of GNB4 intron-1 haplotypes with survival in patients with UICC stage III and IV colorectal carcinoma.Anticancer Res. 2009 Apr;29(4):1271-4.
734 Differential effects of Nucleostemin suppression on cell cycle arrest and apoptosis in the bladder cancer cell lines 5637 and SW1710.Cell Prolif. 2009 Dec;42(6):762-9. doi: 10.1111/j.1365-2184.2009.00635.x. Epub 2009 Aug 25.
735 GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-1/Smad2 signalling pathway.J Cell Mol Med. 2018 Mar;22(3):1650-1665. doi: 10.1111/jcmm.13442. Epub 2018 Jan 19.
736 Protein kinase C- (PKC) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder.BMC Cancer. 2017 Jun 19;17(1):432. doi: 10.1186/s12885-017-3401-7.
737 Profiling the expression pattern of GPI transamidase complex subunits in human cancer.Mod Pathol. 2008 Aug;21(8):979-91. doi: 10.1038/modpathol.2008.76. Epub 2008 May 16.
738 circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide.Mol Ther Nucleic Acids. 2018 Dec 7;13:633-641. doi: 10.1016/j.omtn.2018.10.008. Epub 2018 Oct 18.
739 Oestrogen promotes tumorigenesis of bladder cancer by inducing the enhancer RNA-eGREB1.J Cell Mol Med. 2018 Dec;22(12):5919-5927. doi: 10.1111/jcmm.13861. Epub 2018 Sep 4.
740 Susceptibility genes: GSTM1 and GSTM3 as genetic risk factors in bladder cancer.Cytogenet Cell Genet. 2000;91(1-4):234-8. doi: 10.1159/000056851.
741 The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer.J Proteomics. 2017 Mar 6;156:94-103. doi: 10.1016/j.jprot.2017.01.013. Epub 2017 Jan 27.
742 The impact of the receptor of hyaluronan-mediated motility (RHAMM) on human urothelial transitional cell cancer of the bladder.PLoS One. 2013 Sep 17;8(9):e75681. doi: 10.1371/journal.pone.0075681. eCollection 2013.
743 Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis.Clin Cancer Res. 2016 Mar 1;22(5):1274-83. doi: 10.1158/1078-0432.CCR-15-1706. Epub 2015 Oct 21.
744 The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression.Cell Death Dis. 2014 Sep 4;5(9):e1402. doi: 10.1038/cddis.2014.367.
745 Silencing of HJURP induces dysregulation of cell cycle and ROS metabolism in bladder cancer cells via PPAR-SIRT1 feedback loop.J Cancer. 2017 Jul 20;8(12):2282-2295. doi: 10.7150/jca.19967. eCollection 2017.
746 Association between the cytotoxic T-lymphocyte antigen 4 +49A/G polymorphism and bladder cancer risk.Tumour Biol. 2014 Feb;35(2):1139-42. doi: 10.1007/s13277-013-1152-x. Epub 2013 Sep 8.
747 Genetic variants in the tumor necrosis factor-related apoptosis-inducing ligand and death receptor genes contribute to susceptibility to bladder cancer.Genet Test Mol Biomarkers. 2015 Jun;19(6):309-15. doi: 10.1089/gtmb.2015.0050. Epub 2015 May 8.
748 Human HLAF adjacent transcript 10 promotes the formation of cancer initiating cells and cisplatin resistance in bladder cancer.Mol Med Rep. 2018 Jul;18(1):308-314. doi: 10.3892/mmr.2018.9005. Epub 2018 May 9.
749 Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/-catenin signaling.Chem Biol Interact. 2019 Feb 25;300:73-81. doi: 10.1016/j.cbi.2019.01.015. Epub 2019 Jan 11.
750 Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis.Cancer. 2011 Mar 15;117(6):1197-209. doi: 10.1002/cncr.25565. Epub 2010 Oct 19.
751 Expression of HNF4G and its potential functions in lung cancer.Oncotarget. 2017 Dec 4;9(26):18018-18028. doi: 10.18632/oncotarget.22933. eCollection 2018 Apr 6.
752 MicroRNA-146b Overexpression Promotes Human Bladder Cancer Invasion via Enhancing ETS2-Mediated mmp2 mRNA Transcription.Mol Ther Nucleic Acids. 2019 Jun 7;16:531-542. doi: 10.1016/j.omtn.2019.04.007. Epub 2019 Apr 14.
753 HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer.Am J Transl Res. 2019 Nov 15;11(11):7035-7048. eCollection 2019.
754 Long Noncoding RNA LBCS Inhibits Self-Renewal and Chemoresistance of Bladder Cancer Stem Cells through Epigenetic Silencing of SOX2.Clin Cancer Res. 2019 Feb 15;25(4):1389-1403. doi: 10.1158/1078-0432.CCR-18-1656. Epub 2018 Nov 5.
755 HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways.Oncotarget. 2017 Feb 21;8(8):13586-13599. doi: 10.18632/oncotarget.14600.
756 The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene.Int J Cancer. 2012 Aug 1;131(3):E179-89. doi: 10.1002/ijc.26501. Epub 2011 Dec 21.
757 An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer.Biomolecules. 2016 Sep 2;6(3):37. doi: 10.3390/biom6030037.
758 Integrated analysis of a competing endogenous RNA network reveals key lncRNAs as potential prognostic biomarkers for human bladder cancer.Medicine (Baltimore). 2018 Aug;97(35):e11887. doi: 10.1097/MD.0000000000011887.
759 MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene.Cancer Lett. 2015 Feb 1;357(1):105-113. doi: 10.1016/j.canlet.2014.11.002. Epub 2014 Nov 11.
760 MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer.Oncol Rep. 2014 Apr;31(4):1832-8. doi: 10.3892/or.2014.3048. Epub 2014 Feb 24.
761 Heat shock proteins 60 and 70 are associated with long-term outcome of T1-stage high-grade urothelial tumors of the bladder treated with intravesical Bacillus Calmette-Gurin immunotherapy.Urol Oncol. 2018 Dec;36(12):531.e9-531.e17. doi: 10.1016/j.urolonc.2018.09.007. Epub 2018 Oct 15.
762 Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion.Eur J Cancer. 2010 Jan;46(1):207-15. doi: 10.1016/j.ejca.2009.10.020.
763 OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro.Epigenetics. 2014 Dec;9(12):1626-40. doi: 10.4161/15592294.2014.988052.
764 Conditionally replicating adenovirus-mediated gene therapy in bladder cancer: an orthotopic in vivo model.Urol Oncol. 2006 Jul-Aug;24(4):362-71. doi: 10.1016/j.urolonc.2005.11.028.
765 Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer.Mol Cancer. 2005 May 5;4(1):16. doi: 10.1186/1476-4598-4-16.
766 Increased expression of immediate early response gene 3 protein promotes aggressive progression and predicts poor prognosis in human bladder cancer.BMC Urol. 2018 Sep 24;18(1):82. doi: 10.1186/s12894-018-0388-6.
767 Anti-interleukin-10R1 monoclonal antibody in combination with bacillus Calmette--Gurin is protective against bladder cancer metastasis in a murine orthotopic tumour model and demonstrates systemic specific anti-tumour immunity.Clin Exp Immunol. 2014 Jul;177(1):261-8. doi: 10.1111/cei.12315.
768 Glycoprotein-130 Expression Is Associated with Aggressive Bladder Cancer and Is a Potential Therapeutic Target.Mol Cancer Ther. 2019 Feb;18(2):413-420. doi: 10.1158/1535-7163.MCT-17-1079. Epub 2018 Oct 31.
769 TGF1 Promotes Gemcitabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer.Theranostics. 2017 Jul 22;7(12):3053-3067. doi: 10.7150/thno.19542. eCollection 2017.
770 Loss of heterozygosity of chromosome 13q33-34 region and molecular analysis of ING1 and p53 genes in bladder carcinoma.Mol Biol Rep. 2015 Feb;42(2):507-16. doi: 10.1007/s11033-014-3794-1. Epub 2014 Oct 17.
771 Comprehensive pathway-based interrogation of genetic variations in the nucleotide excision DNA repair pathway and risk of bladder cancer.Cancer. 2012 Jan 1;118(1):205-15. doi: 10.1002/cncr.26224. Epub 2011 Jun 20.
772 Reduced ING4 Expression Is Associated with the Malignancy of Human Bladder.Urol Int. 2015;94(4):464-71. doi: 10.1159/000364832. Epub 2015 Mar 14.
773 The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer.Oncotarget. 2015 Apr 30;6(12):10195-206. doi: 10.18632/oncotarget.3555.
774 SubID, a non-median dichotomization tool for heterogeneous populations, reveals the pan-cancer significance of INPP4B and its regulation by EVI1 in AML.PLoS One. 2018 Feb 7;13(2):e0191510. doi: 10.1371/journal.pone.0191510. eCollection 2018.
775 SKIP expression is correlated with clinical prognosis in patients with bladder cancer.Int J Clin Exp Pathol. 2014 Mar 15;7(4):1695-701. eCollection 2014.
776 Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors.Mol Cancer Res. 2015 Sep;13(9):1306-15. doi: 10.1158/1541-7786.MCR-15-0130. Epub 2015 Jun 15.
777 MicroRNA-124-3p suppresses cell migration and invasion by targeting ITGA3 signaling in bladder cancer.Cancer Biomark. 2019;24(2):159-172. doi: 10.3233/CBM-182000.
778 Epigenetic inactivation of ITIH5 promotes bladder cancer progression and predicts early relapse of pT1 high-grade urothelial tumours.Carcinogenesis. 2014 Mar;35(3):727-36. doi: 10.1093/carcin/bgt375. Epub 2013 Nov 21.
779 Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling.Life Sci. 2019 Aug 1;230:162-168. doi: 10.1016/j.lfs.2019.05.053. Epub 2019 May 21.
780 HBO1 promotes cell proliferation in bladder cancer via activation of Wnt/-catenin signaling.Mol Carcinog. 2018 Jan;57(1):12-21. doi: 10.1002/mc.22715. Epub 2017 Sep 2.
781 Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2.Sci Transl Med. 2017 Feb 22;9(378):eaai8312. doi: 10.1126/scitranslmed.aai8312.
782 Cytotoxic T lymphocyte antigen 4 (CTLA4) gene polymorphism with bladder cancer risk in North Indian population.Mol Biol Rep. 2014 Feb;41(2):799-807. doi: 10.1007/s11033-013-2919-2. Epub 2014 Jan 4.
783 Role of a Kinesin Motor in Cancer Cell Mechanics.Nano Lett. 2019 Nov 13;19(11):7691-7702. doi: 10.1021/acs.nanolett.9b02592. Epub 2019 Oct 7.
784 A Histone Deacetylase Inhibitor, OBP-801, and Celecoxib Synergistically Inhibit the Cell Growth with Apoptosis via a DR5-Dependent Pathway in Bladder Cancer Cells.Mol Cancer Ther. 2016 Sep;15(9):2066-75. doi: 10.1158/1535-7163.MCT-16-0010. Epub 2016 Jul 12.
785 miR-5195-3p Inhibits Proliferation and Invasion of Human Bladder Cancer Cells by Directly Targeting Oncogene KLF5.Oncol Res. 2017 Aug 7;25(7):1081-1087. doi: 10.3727/096504016X14831120463349. Epub 2017 Jan 20.
786 The lncRNA ELF3-AS1 promotes bladder cancer progression by interaction with Krppel-like factor 8.Biochem Biophys Res Commun. 2019 Jan 15;508(3):762-768. doi: 10.1016/j.bbrc.2018.11.183. Epub 2018 Dec 7.
787 Increased expression of multidrug resistance-associated proteins in bladder cancer during clinical course and drug resistance to doxorubicin.Int J Cancer. 2002 Apr 1;98(4):630-5. doi: 10.1002/ijc.10246.
788 Downregulated KLK13 expression in bladder cancer highlights tumor aggressiveness and unfavorable patients' prognosis.J Cancer Res Clin Oncol. 2017 Mar;143(3):521-532. doi: 10.1007/s00432-016-2301-6. Epub 2016 Nov 17.
789 Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells.Eur Urol. 2017 Jan;71(1):8-12. doi: 10.1016/j.eururo.2016.06.025. Epub 2016 Jul 4.
790 Aberrant expression of KPNA2 is associated with a poor prognosis and contributes to OCT4 nuclear transportation in bladder cancer.Oncotarget. 2016 Nov 8;7(45):72767-72776. doi: 10.18632/oncotarget.11889.
791 Differential expression of cytokeratin 14 and 18 in bladder cancer tumorigenesis.Exp Biol Med (Maywood). 2018 Feb;243(4):344-349. doi: 10.1177/1535370218754493. Epub 2018 Jan 19.
792 Diagnostic accuracy of urine cytokeratin 20 for bladder cancer: A meta-analysis.Asia Pac J Clin Oncol. 2019 Apr;15(2):e11-e19. doi: 10.1111/ajco.13024. Epub 2018 Jun 22.
793 In stage pT1 non-muscle-invasive bladder cancer (NMIBC), high KRT20 and low KRT5 mRNA expression identify the luminal subtype and predict recurrence and survival.Virchows Arch. 2017 Mar;470(3):267-274. doi: 10.1007/s00428-017-2064-8. Epub 2017 Jan 10.
794 Detection and Clinical Significance of Circulating Tumor Cells in Patients Undergoing Radical Cystectomy for Urothelial Bladder Cancer.Clin Genitourin Cancer. 2017 Aug;15(4):455-462. doi: 10.1016/j.clgc.2016.11.005. Epub 2016 Dec 1.
795 Drug-induced keratin 9 interaction with Hsp70 in bladder cancer cells.Cell Stress Chaperones. 2018 Sep;23(5):1137-1142. doi: 10.1007/s12192-018-0913-2. Epub 2018 May 25.
796 Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells.Int J Oncol. 2017 Jan;50(1):263-271. doi: 10.3892/ijo.2016.3788. Epub 2016 Dec 5.
797 Significant antitumoral activity of cationic multilamellar liposomes containing human IFN-beta gene against human renal cell carcinoma.Clin Cancer Res. 2003 Mar;9(3):1129-35.
798 A Potent Chemotherapeutic Strategy with Eg5 Inhibitor against Gemcitabine Resistant Bladder Cancer.PLoS One. 2015 Dec 10;10(12):e0144484. doi: 10.1371/journal.pone.0144484. eCollection 2015.
799 Implication of vascular endothelial growth factor A and C in revealing diagnostic lymphangiogenic markers in node-positive bladder cancer.Oncotarget. 2017 Mar 28;8(13):21871-21883. doi: 10.18632/oncotarget.15669.
800 Suppression of LETM1 by siRNA inhibits cell proliferation and invasion of bladder cancer cells.Oncol Rep. 2017 Nov;38(5):2935-2940. doi: 10.3892/or.2017.5959. Epub 2017 Sep 18.
801 An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells.Mol Biosyst. 2017 Aug 22;13(9):1713-1721. doi: 10.1039/c7mb00354d.
802 Sensitizing effect of galectin-7 in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species.Cancer Res. 2007 Feb 1;67(3):1212-20. doi: 10.1158/0008-5472.CAN-06-3283.
803 Genetic variation in the base excision repair pathway and bladder cancer risk.Hum Genet. 2007 Apr;121(2):233-42. doi: 10.1007/s00439-006-0294-y. Epub 2007 Jan 3.
804 MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B.Oncogene. 2016 Mar 10;35(10):1292-301. doi: 10.1038/onc.2015.187. Epub 2015 Jun 1.
805 Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One. 2012;7(4):e35175.
806 LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer.Cancer Res. 2007 May 1;67(9):4123-9. doi: 10.1158/0008-5472.CAN-07-0012. Epub 2007 Apr 24.
807 Lysyl oxidase family members in urological tumorigenesis and fibrosis.Oncotarget. 2018 Apr 13;9(28):20156-20164. doi: 10.18632/oncotarget.24948. eCollection 2018 Apr 13.
808 Leupaxin Promotes Bladder Cancer Proliferation, Metastasis, and Angiogenesis Through the PI3K/AKT Pathway.Cell Physiol Biochem. 2018;47(6):2250-2260. doi: 10.1159/000491536. Epub 2018 Jul 5.
809 Reduced lecithin: retinol acyltransferase expression correlates with increased pathologic tumor stage in bladder cancer.Clin Cancer Res. 2004 May 15;10(10):3429-37. doi: 10.1158/1078-0432.CCR-03-0756.
810 Small Leucine Rich Proteoglycans (decorin, biglycan and lumican) in cancer.Clin Chim Acta. 2019 Apr;491:1-7. doi: 10.1016/j.cca.2019.01.003. Epub 2019 Jan 7.
811 Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer.Am J Transl Res. 2019 Jul 15;11(7):4397-4410. eCollection 2019.
812 MAN1B1 is associated with poor prognosis and modulates proliferation and apoptosis in bladder cancer.Gene. 2018 Dec 30;679:314-319. doi: 10.1016/j.gene.2018.09.022. Epub 2018 Sep 12.
813 STOP smoking and alcohol drinking before OPeration for bladder cancer ?the STOP-OP study),?perioperative smoking and alcohol cessation intervention in relation to radical cystectomy: study protocol for a randomised controlled trial.Trials. 2017 Jul 17;18(1):329. doi: 10.1186/s13063-017-2065-6.
814 Differential expression of multidrug resistancerelated proteins in adriamycinresistant (pumc?1/ADM) and parental (pumc?1) human bladder cancer cell lines.Mol Med Rep. 2016 Nov;14(5):4741-4746. doi: 10.3892/mmr.2016.5806. Epub 2016 Oct 5.
815 X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism.Sci Adv. 2018 Jun 13;4(6):eaar5598. doi: 10.1126/sciadv.aar5598. eCollection 2018 Jun.
816 Gene Expression, DNA Methylation and Prognostic Significance of DNA Repair Genes in Human Bladder Cancer.Cell Physiol Biochem. 2017;42(6):2404-2417. doi: 10.1159/000480182. Epub 2017 Aug 21.
817 Prognostic value of MCM2 immunoreactivity in stage T1 transitional cell carcinoma of the bladder.Eur Urol. 2003 Feb;43(2):138-45. doi: 10.1016/s0302-2838(02)00580-8.
818 CD147 and MCT1-potential partners in bladder cancer aggressiveness and cisplatin resistance.Mol Carcinog. 2015 Nov;54(11):1451-66. doi: 10.1002/mc.22222. Epub 2014 Sep 27.
819 A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer.Oncotarget. 2015 Jan 1;6(1):484-93. doi: 10.18632/oncotarget.2861.
820 The knockdown of the Mediator complex subunit MED15 restrains urothelial bladder cancer cells' malignancy.Oncol Lett. 2018 Sep;16(3):3013-3021. doi: 10.3892/ol.2018.9014. Epub 2018 Jun 25.
821 Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/-catenin signalling pathway.J Cell Mol Med. 2017 Dec;21(12):3254-3263. doi: 10.1111/jcmm.13229. Epub 2017 Jun 19.
822 The Contrasting Role of the Mediator Subunit MED30 in the Progression of Bladder Cancer.Anticancer Res. 2017 Dec;37(12):6685-6695. doi: 10.21873/anticanres.12127.
823 N-acetylglucosaminyltransferase V and beta1-6 branching N-linked oligosaccharides are associated with good prognosis of patients with bladder cancer.Clin Cancer Res. 2006 Apr 15;12(8):2506-11. doi: 10.1158/1078-0432.CCR-05-1938.
824 Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer.Eur Urol. 2010 Sep;58(3):433-41. doi: 10.1016/j.eururo.2010.05.043. Epub 2010 Jun 9.
825 MicroRNA-411 Downregulation Enhances Tumor Growth by Upregulating MLLT11 Expression in Human Bladder Cancer.Mol Ther Nucleic Acids. 2018 Jun 1;11:312-322. doi: 10.1016/j.omtn.2018.03.003. Epub 2018 Mar 10.
826 MMP23B expression and protein levels in blood and urine are associated with bladder cancer.Carcinogenesis. 2018 Oct 8;39(10):1254-1263. doi: 10.1093/carcin/bgy098.
827 Identification of biomarkers associated with progression and prognosis in bladder cancer via co-expression analysis.Cancer Biomark. 2019;24(2):183-193. doi: 10.3233/CBM-181940.
828 Motor neuron and pancreas homeobox1/HLXB9 promotes sustained proliferation in bladder cancer by upregulating CCNE1/2.J Exp Clin Cancer Res. 2018 Jul 16;37(1):154. doi: 10.1186/s13046-018-0829-9.
829 Association of the PIG3 promoter polymorphism with invasive bladder cancer in a Japanese population.Jpn J Clin Oncol. 2006 Feb;36(2):116-20. doi: 10.1093/jjco/hyi225. Epub 2006 Jan 17.
830 Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background.PLoS One. 2012;7(1):e29396. doi: 10.1371/journal.pone.0029396. Epub 2012 Jan 4.
831 Reduced Expression of Metastasis Suppressor-1 (MTSS1) Accelerates Progression of Human Bladder Uroepithelium Cell Carcinoma.Anticancer Res. 2017 Aug;37(8):4499-4505. doi: 10.21873/anticanres.11846.
832 Loss of MTUS1/ATIP expression is associated with adverse outcome in advanced bladder carcinomas: data from a retrospective study.BMC Cancer. 2014 Mar 20;14:214. doi: 10.1186/1471-2407-14-214.
833 Variants of MUC5B minisatellites and the susceptibility of bladder cancer.DNA Cell Biol. 2009 Apr;28(4):169-76. doi: 10.1089/dna.2008.0827.
834 The value of combined use of survivin, cytokeratin 20 and mucin 7 mRNA for bladder cancer detection in voided urine.J Cancer Res Clin Oncol. 2008 Jun;134(6):659-65. doi: 10.1007/s00432-007-0331-9. Epub 2007 Nov 20.
835 Characterization of inflammasome-related genes in urine sediments of patients receiving intravesical BCG therapy.Urol Oncol. 2017 Dec;35(12):674.e19-674.e24. doi: 10.1016/j.urolonc.2017.08.004. Epub 2017 Sep 6.
836 Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer.Lab Invest. 2017 May;97(5):567-576. doi: 10.1038/labinvest.2017.17. Epub 2017 Feb 27.
837 NBS1 Glu185Gln polymorphism and susceptibility to urinary system cancer: a meta-analysis.Tumour Biol. 2014 Nov;35(11):10723-9. doi: 10.1007/s13277-014-2346-6. Epub 2014 Jul 30.
838 Expression and significance of androgen receptor coactivators in urothelial carcinoma of the bladder.Endocr Relat Cancer. 2009 Mar;16(1):123-37. doi: 10.1677/ERC-08-0124. Epub 2008 Oct 9.
839 LASP2 suppressed malignancy and Wnt/-catenin signaling pathway activation in bladder cancer.Exp Ther Med. 2018 Dec;16(6):5215-5223. doi: 10.3892/etm.2018.6836. Epub 2018 Oct 9.
840 Cyclosporine A and tacrolimus inhibit bladder cancer growth through down-regulation of NFATc1.Oncotarget. 2015 Jan 30;6(3):1582-93. doi: 10.18632/oncotarget.2750.
841 Analysis of nm23 gene expressions in human bladder and renal cancers.Int J Urol. 1994 Dec;1(4):324-31. doi: 10.1111/j.1442-2042.1994.tb00058.x.
842 Neuromedin U is regulated by the metastasis suppressor RhoGDI2 and is a novel promoter of tumor formation, lung metastasis and cancer cachexia.Oncogene. 2007 Feb 1;26(5):765-73. doi: 10.1038/sj.onc.1209835. Epub 2006 Jul 31.
843 A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression.Cancer Res. 2009 Apr 1;69(7):3157-64. doi: 10.1158/0008-5472.CAN-08-3530. Epub 2009 Mar 17.
844 Expression in bladder transitional cell carcinoma by real-time quantitative reverse transcription polymerase chain reaction array of 65 genes at the tumor suppressor locus 9q34.1-2: identification of 5 candidates tumor suppressor genes.Int J Cancer. 2004 Sep 10;111(4):539-42. doi: 10.1002/ijc.20283.
845 Nesfatin-1/Nucleobindin-2 Is a Potent Prognostic Marker and Enhances Cell Proliferation, Migration, and Invasion in Bladder Cancer.Dis Markers. 2018 Sep 19;2018:4272064. doi: 10.1155/2018/4272064. eCollection 2018.
846 Gene therapy of human bladder cancer with adenovirus-mediated antisense basic fibroblast growth factor.Clin Cancer Res. 2000 Nov;6(11):4422-31.
847 In silico design and in vitro characterization of a recombinant antigen for specific recognition of NMP22.Int J Biol Macromol. 2019 Nov 1;140:69-77. doi: 10.1016/j.ijbiomac.2019.08.065. Epub 2019 Aug 9.
848 Candidate of metastasis 1 regulates in vitro growth and invasion of bladder cancer cells.Int J Oncol. 2013 Apr;42(4):1249-56. doi: 10.3892/ijo.2013.1802. Epub 2013 Jan 29.
849 Prognostic value of opioid binding protein/cell adhesion molecule-like promoter methylation in bladder carcinoma.Eur J Cancer. 2011 May;47(7):1106-14. doi: 10.1016/j.ejca.2010.12.025. Epub 2011 Jan 25.
850 FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study.J Urol. 2017 Jun;197(6):1410-1418. doi: 10.1016/j.juro.2016.12.096. Epub 2016 Dec 31.
851 P3H4 is correlated with clinicopathological features and prognosis in bladder cancer.World J Surg Oncol. 2018 Oct 15;16(1):206. doi: 10.1186/s12957-018-1507-2.
852 Down-regulation of the ErbB3 binding protein 1 in human bladder cancer promotes tumor progression and cell proliferation.Mol Biol Rep. 2013 May;40(5):3799-805. doi: 10.1007/s11033-012-2458-2. Epub 2013 Jan 3.
853 PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells.Biochem J. 2017 Mar 24;474(8):1333-1346. doi: 10.1042/BCJ20160875.
854 PBOV1 correlates with progression of ovarian cancer and inhibits proliferation of ovarian cancer cells.Oncol Rep. 2016 Jan;35(1):488-96. doi: 10.3892/or.2015.4396. Epub 2015 Nov 4.
855 Clinical and prognostic significance of protocadherin-10 (PCDH10) promoter methylation in bladder cancer.J Int Med Res. 2012;40(6):2117-23. doi: 10.1177/030006051204000609.
856 p53/PCDH17/Beclin-1 Proteins as Prognostic Predictors for Urinary Bladder Cancer.J Cancer. 2019 Oct 15;10(25):6207-6216. doi: 10.7150/jca.37335. eCollection 2019.
857 Hypermethylation of the polycomb group target gene PCDH7 in bladder tumors from patients of all ages.J Urol. 2013 Jul;190(1):311-6. doi: 10.1016/j.juro.2013.01.078. Epub 2013 Jan 28.
858 Association between protocadherin 8 promoter hypermethylation and the pathological status of prostate cancer.Oncol Lett. 2017 Aug;14(2):1657-1664. doi: 10.3892/ol.2017.6282. Epub 2017 May 31.
859 miRNA?6a?p and miR?6b?p inhibit the proliferation of bladder cancer cells by regulating PDCD10.Oncol Rep. 2018 Dec;40(6):3523-3532. doi: 10.3892/or.2018.6734. Epub 2018 Sep 26.
860 Prognostic value of PDCD6 polymorphisms and the susceptibility to bladder cancer.Tumour Biol. 2014 Aug;35(8):7547-54. doi: 10.1007/s13277-014-2010-1. Epub 2014 May 3.
861 The Inhibitory Effect of PDIA6 Downregulation on Bladder Cancer Cell Proliferation and Invasion.Oncol Res. 2017 Apr 14;25(4):587-593. doi: 10.3727/096504016X14761811155298. Epub 2016 Oct 18.
862 The Role of Pyruvate Dehydrogenase Kinase-4 (PDK4) in Bladder Cancer and Chemoresistance.Mol Cancer Ther. 2018 Sep;17(9):2004-2012. doi: 10.1158/1535-7163.MCT-18-0063. Epub 2018 Jun 15.
863 Construction of a recombinant eukaryotic expression plasmid containing human PDLIM2 gene and its biological activity.Plasmid. 2011 Jul;66(2):106-11. doi: 10.1016/j.plasmid.2011.06.005. Epub 2011 Jul 19.
864 MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer.PLoS One. 2015 Feb 23;10(2):e0118086. doi: 10.1371/journal.pone.0118086. eCollection 2015.
865 Genetic alteration in phosphofructokinase family promotes growth of muscle-invasive bladder cancer.Int J Biol Markers. 2016 Jul 30;31(3):e286-93. doi: 10.5301/jbm.5000189.
866 Silencing of Profilin-1 suppresses cell adhesion and tumor growth via predicted alterations in integrin and Ca2+ signaling in T24M-based bladder cancer models.Oncotarget. 2016 Oct 25;7(43):70750-70768. doi: 10.18632/oncotarget.12218.
867 Proteomics identification of PGAM1 as a potential therapeutic target for urothelial bladder cancer.J Proteomics. 2016 Jan 30;132:85-92. doi: 10.1016/j.jprot.2015.11.027. Epub 2015 Dec 3.
868 Transcriptomic analysis of high-throughput sequencing about circRNA, lncRNA and mRNA in bladder cancer.Gene. 2018 Nov 30;677:189-197. doi: 10.1016/j.gene.2018.07.041. Epub 2018 Jul 17.
869 LncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting miR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer.Cancer Med. 2020 Jan;9(2):724-736. doi: 10.1002/cam4.2684. Epub 2019 Nov 25.
870 The increased expression of Piezo1 and Piezo2 ion channels in human and mouse bladder carcinoma.Adv Clin Exp Med. 2018 Aug;27(8):1025-1031. doi: 10.17219/acem/71080.
871 Dual Inhibition of PIK3C3 and FGFR as a New Therapeutic Approach to Treat Bladder Cancer.Clin Cancer Res. 2018 Mar 1;24(5):1176-1189. doi: 10.1158/1078-0432.CCR-17-2066. Epub 2017 Dec 8.
872 Piwil 2 expression is correlated with disease-specific and progression-free survival of chemotherapy-treated bladder cancer patients.Mol Med. 2015 May 13;21(1):371-80. doi: 10.2119/molmed.2014.00250.
873 Up-regulation of plakophilin-2 and Down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer.Urology. 2012 Jan;79(1):240.e1-8. doi: 10.1016/j.urology.2011.08.049. Epub 2011 Nov 25.
874 RNA interference suppressing PLCE1 gene expression decreases invasive power of human bladder cancer T24 cell line.Cancer Genet Cytogenet. 2010 Jul 15;200(2):110-9. doi: 10.1016/j.cancergencyto.2010.01.021.
875 Knockdown of phospholipase C-epsilon by short-hairpin RNA-mediated gene silencing induces apoptosis in human bladder cancer cell lines.Cancer Biother Radiopharm. 2013 Apr;28(3):233-9. doi: 10.1089/cbr.2012.1216. Epub 2013 Mar 13.
876 Apoptin induces apoptosis in human bladder cancer EJ and BIU-87 cells.Asian Pac J Cancer Prev. 2012;13(1):135-8. doi: 10.7314/apjcp.2012.13.1.135.
877 Bioplasmonic paper-based assay for perilipin-2 non-invasively detects renal cancer.Kidney Int. 2019 Dec;96(6):1417-1421. doi: 10.1016/j.kint.2019.08.020. Epub 2019 Sep 3.
878 Polyamine-modulated factor-1 methylation predicts Bacillus Calmette-Gurin response in patients with high-grade non-muscle-invasive bladder carcinoma.Eur Urol. 2013 Feb;63(2):364-70. doi: 10.1016/j.eururo.2012.05.050. Epub 2012 Jun 5.
879 Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.PLoS One. 2013 Jul 26;8(7):e69317. doi: 10.1371/journal.pone.0069317. Print 2013.
880 An epigenetic biomarker combination of PCDH17 and POU4F2 detects bladder cancer accurately by methylation analyses of urine sediment DNA in Han Chinese.Oncotarget. 2016 Jan 19;7(3):2754-64. doi: 10.18632/oncotarget.6666.
881 Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer.Oncotarget. 2017 May 9;8(19):30844-30858. doi: 10.18632/oncotarget.9602.
882 Variations in CYP isoforms and bladder cancer: a superfamily paradigm.Urol Oncol. 2014 Jan;32(1):28.e33-40. doi: 10.1016/j.urolonc.2012.10.005. Epub 2013 Feb 19.
883 miR-186 downregulates protein phosphatase PPM1B in bladder cancer and mediates G1-S phase transition.Tumour Biol. 2016 Apr;37(4):4331-41. doi: 10.1007/s13277-015-4117-4. Epub 2015 Oct 23.
884 Mutation analysis of 8p genes POLB and PPP2CB in bladder cancer.Cancer Genet Cytogenet. 1997 Feb;93(2):167-71. doi: 10.1016/s0165-4608(96)00200-2.
885 Genetic Variations in the 3'-untranslated Regions of Genes Involved in the Cell Cycle and Apoptosis Pathways Affect Bladder Cancer Risk.Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):67-72. doi: 10.21873/cgp.20066.
886 Prima-1 induces apoptosis in bladder cancer cell lines by activating p53.Clinics (Sao Paulo). 2013;68(3):297-303. doi: 10.6061/clinics/2013(03)oa03.
887 LncRNA RP11-79H23.3 Functions as a Competing Endogenous RNA to Regulate PTEN Expression through Sponging hsa-miR-107 in the Development of Bladder Cancer.Int J Mol Sci. 2018 Aug 26;19(9):2531. doi: 10.3390/ijms19092531.
888 KIAA1096, a gene on chromosome 1q, is amplified and overexpressed in bladder cancer.DNA Cell Biol. 2002 Oct;21(10):707-15. doi: 10.1089/104454902760599681.
889 Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis. 2006 Jan;27(1):112-6. doi: 10.1093/carcin/bgi172. Epub 2005 Jun 29.
890 Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis.Mol Cancer. 2018 Oct 3;17(1):144. doi: 10.1186/s12943-018-0892-z.
891 Rab11 Functions as an Oncoprotein via Nuclear Factor kappa B (NF-B) Signaling Pathway in Human Bladder Carcinoma.Med Sci Monit. 2018 Jul 22;24:5093-5101. doi: 10.12659/MSM.911454.
892 Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-mesenchymal transition and activation of Akt/GSK-3/Snail signaling.Carcinogenesis. 2013 Oct;34(10):2401-8. doi: 10.1093/carcin/bgt187. Epub 2013 May 30.
893 Rab27A overexpression promotes bladder cancer proliferation and chemoresistance through regulation of NF-B signaling.Oncotarget. 2017 Sep 8;8(43):75272-75283. doi: 10.18632/oncotarget.20775. eCollection 2017 Sep 26.
894 Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties.Cancer Res. 2014 Oct 15;74(20):5758-71. doi: 10.1158/0008-5472.CAN-13-3512. Epub 2014 Sep 26.
895 Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36.J Biosci. 2018 Jun;43(2):365-373.
896 Urinary retinoic acid receptor-2 gene promoter methylation and hyaluronidase activity as noninvasive tests for diagnosis of bladder cancer.Clin Biochem. 2012 Apr;45(6):402-7. doi: 10.1016/j.clinbiochem.2012.01.010. Epub 2012 Jan 18.
897 Expression of ral GTPases, their effectors, and activators in human bladder cancer.Clin Cancer Res. 2007 Jul 1;13(13):3803-13. doi: 10.1158/1078-0432.CCR-06-2419.
898 RalGPS2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells.Exp Cell Res. 2018 Jan 15;362(2):349-361. doi: 10.1016/j.yexcr.2017.11.036. Epub 2017 Dec 6.
899 MiR-194 inhibits cell proliferation and invasion via repression of RAP2B in bladder cancer.Biomed Pharmacother. 2016 May;80:268-275. doi: 10.1016/j.biopha.2016.03.026. Epub 2016 Apr 1.
900 Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer.J Urol. 2008 Jan;179(1):346-52. doi: 10.1016/j.juro.2007.08.091. Epub 2007 Nov 19.
901 RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder cancer.Cell Signal. 2018 Aug;48:38-44. doi: 10.1016/j.cellsig.2018.04.006. Epub 2018 Apr 24.
902 HRAS1 variable number of tandem repeats polymorphism and risk of bladder cancer.Int J Cancer. 2002 Aug 1;100(4):414-8. doi: 10.1002/ijc.10497.
903 Methylation patterns of Rb1 and Casp-8 promoters and their impact on their expression in bladder cancer.Cancer Invest. 2009 Jan;27(1):70-80. doi: 10.1080/07357900802172085.
904 CpG hypermethylation of cellular retinol-binding protein 1 contributes to cell proliferation and migration in bladder cancer.Int J Oncol. 2010 Dec;37(6):1379-88. doi: 10.3892/ijo_00000789.
905 Regulator of cullins-1 expression knockdown suppresses the malignant progression of muscle-invasive transitional cell carcinoma by regulating mTOR/DEPTOR pathway.Br J Cancer. 2016 Feb 2;114(3):305-13. doi: 10.1038/bjc.2015.444. Epub 2016 Jan 7.
906 Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer.Clin Cancer Res. 2009 Oct 1;15(19):6008-17. doi: 10.1158/1078-0432.CCR-09-0898. Epub 2009 Sep 29.
907 Upregulated expression of polycomb protein Ring1 contributes to poor prognosis and accelerated proliferation in human hepatocellular carcinoma.Tumour Biol. 2015 Dec;36(12):9579-88. doi: 10.1007/s13277-015-3721-7. Epub 2015 Jul 4.
908 Association of prostatic inflammation with down-regulation of macrophage inhibitory cytokine-1 gene in symptomatic benign prostatic hyperplasia.J Urol. 2004 Jun;171(6 Pt 1):2330-5. doi: 10.1097/01.ju.0000127760.87421.e9.
909 Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy.Oncotarget. 2016 Feb 23;7(8):8956-67. doi: 10.18632/oncotarget.6909.
910 RSPH9 methylation pattern as a prognostic indicator in patients with non-muscle invasive bladder cancer.Oncol Rep. 2016 Feb;35(2):1195-203. doi: 10.3892/or.2015.4409. Epub 2015 Nov 11.
911 Silencing of RTKN2 by siRNA suppresses proliferation, and induces G1 arrest and apoptosis in human bladder cancer cells.Mol Med Rep. 2016 Jun;13(6):4872-8. doi: 10.3892/mmr.2016.5127. Epub 2016 Apr 14.
912 C14orf166 is a high-risk biomarker for bladder cancer and promotes bladder cancer cell proliferation.J Transl Med. 2016 Feb 23;14:55. doi: 10.1186/s12967-016-0801-4.
913 Gene Expression Profile of the Clinically Aggressive Micropapillary Variant of Bladder Cancer.Eur Urol. 2016 Oct;70(4):611-620. doi: 10.1016/j.eururo.2016.02.056. Epub 2016 Mar 15.
914 Down-regulation of S100C is associated with bladder cancer progression and poor survival.Clin Cancer Res. 2005 Jan 15;11(2 Pt 1):606-11.
915 S100A16 regulated by Snail promotes the chemoresistance of nonmuscle invasive bladder cancer through the AKT/Bcl-2 pathway.Cancer Manag Res. 2019 Mar 27;11:2449-2456. doi: 10.2147/CMAR.S196450. eCollection 2019.
916 Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumours.J Cancer Res Clin Oncol. 2007 Apr;133(4):253-61. doi: 10.1007/s00432-006-0164-y. Epub 2006 Nov 29.
917 HAF drives the switch of HIF-1 to HIF-2 by activating the NF-B pathway, leading to malignant behavior of T24 bladder cancer cells.Int J Oncol. 2014 Feb;44(2):393-402. doi: 10.3892/ijo.2013.2210. Epub 2013 Dec 6.
918 Level of selenoprotein transcripts in peripheral leukocytes of patients with bladder cancer and healthy individuals.Clin Chem Lab Med. 2009;47(9):1125-32. doi: 10.1515/CCLM.2009.261.
919 Long non-coding RNA XIST promotes cell proliferation and migration through targeting miR-133a in bladder cancer.Exp Ther Med. 2019 Nov;18(5):3475-3483. doi: 10.3892/etm.2019.7960. Epub 2019 Aug 29.
920 SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-RI.Mol Carcinog. 2017 Oct;56(10):2332-2341. doi: 10.1002/mc.22687. Epub 2017 Jun 30.
921 SETD6 regulates NF-B signaling in urothelial cell survival: Implications for bladder cancer.Oncotarget. 2017 Feb 28;8(9):15114-15125. doi: 10.18632/oncotarget.14750.
922 DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection.BMC Cancer. 2008 Aug 14;8:238. doi: 10.1186/1471-2407-8-238.
923 Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection.Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2109-16. doi: 10.1158/1078-0432.CCR-05-2468.
924 Glucocorticoid-Inducible Kinase 2 Promotes Bladder Cancer Cell Proliferation, Migration and Invasion by Enhancing -catenin/c-Myc Signaling Pathway.J Cancer. 2018 Dec 10;9(24):4774-4782. doi: 10.7150/jca.25811. eCollection 2018.
925 SH3BGRL3 Protein as a Potential Prognostic Biomarker for Urothelial Carcinoma: A Novel Binding Partner of Epidermal Growth Factor Receptor.Clin Cancer Res. 2015 Dec 15;21(24):5601-11. doi: 10.1158/1078-0432.CCR-14-3308. Epub 2015 Aug 18.
926 Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer.Genomics. 1997 Sep 1;44(2):163-70. doi: 10.1006/geno.1997.4849.
927 Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1.FEBS Lett. 2013 Nov 29;587(23):3875-82.
928 High expression of spindle and kinetochore- associated protein 1 predicts early recurrence and progression of non-muscle invasive bladder cancer.Cancer Biomark. 2018;22(3):543-549. doi: 10.3233/CBM-181202.
929 When the guardian sleeps: Reactivation of the p53 pathway in cancer.Mutat Res Rev Mutat Res. 2017 Jul;773:1-13. doi: 10.1016/j.mrrev.2017.02.003. Epub 2017 Feb 17.
930 Genetic variants in the death receptor 4 gene contribute to susceptibility to bladder cancer.Mutat Res. 2009 Feb 10;661(1-2):85-92. doi: 10.1016/j.mrfmmm.2008.11.009. Epub 2008 Nov 25.
931 Long noncoding RNA neuroblastoma-associated transcript 1 gene inhibits malignant cellular phenotypes of bladder cancer through miR-21/SOCS6 axis.Cell Death Dis. 2018 Oct 11;9(10):1042. doi: 10.1038/s41419-018-1090-z.
932 A DNA hypermethylation profile reveals new potential biomarkers for the evaluation of prognosis in urothelial bladder cancer.APMIS. 2017 Sep;125(9):787-796. doi: 10.1111/apm.12719. Epub 2017 Jun 6.
933 Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11.Mol Med. 2018 Jul 31;24(1):40. doi: 10.1186/s10020-018-0039-0.
934 Decreased expression of SRY-box containing gene 30 is related to malignant phenotypes of human bladder cancer and correlates with poor prognosis.BMC Cancer. 2018 Jun 7;18(1):642. doi: 10.1186/s12885-018-4560-x.
935 SOX4 regulates invasion of bladder cancer cells via repression of WNT5a.Int J Oncol. 2019 Aug;55(2):359-370. doi: 10.3892/ijo.2019.4832. Epub 2019 Jun 26.
936 Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res. 2008 Jul 1;68(13):5345-54. doi: 10.1158/0008-5472.CAN-07-6805.
937 Sperm associated antigen 9 plays an important role in bladder transitional cell carcinoma.PLoS One. 2013 Dec 9;8(12):e81348. doi: 10.1371/journal.pone.0081348. eCollection 2013.
938 Prognostic value of the combined expression of tumor-associated trypsin inhibitor (TATI) and p53 in patients with bladder cancer undergoing radical cystectomy.Cancer Biomark. 2019;26(3):281-289. doi: 10.3233/CBM-182143.
939 Sorcin a Potential Molecular Target for Cancer Therapy.Transl Oncol. 2018 Dec;11(6):1379-1389. doi: 10.1016/j.tranon.2018.08.015. Epub 2018 Sep 11.
940 Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer.Biochem Biophys Res Commun. 2012 Jan 6;417(1):588-93. doi: 10.1016/j.bbrc.2011.12.011. Epub 2011 Dec 9.
941 Oxidative damage and response to Bacillus Calmette-Gurin in bladder cancer cells expressing sialyltransferase ST3GAL1.BMC Cancer. 2018 Feb 17;18(1):198. doi: 10.1186/s12885-018-4107-1.
942 Epigenetic inactivation of ST6GAL1 in human bladder cancer.BMC Cancer. 2014 Dec 2;14:901. doi: 10.1186/1471-2407-14-901.
943 Expression of sialyl-Tn sugar antigen in bladder cancer cells affects response to Bacillus Calmette Gurin (BCG) and to oxidative damage.Oncotarget. 2017 Apr 17;8(33):54506-54517. doi: 10.18632/oncotarget.17138. eCollection 2017 Aug 15.
944 Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts.Elife. 2017 Jul 10;6:e26980. doi: 10.7554/eLife.26980.
945 The role of STAG2 in bladder cancer.Pharmacol Res. 2018 May;131:143-149. doi: 10.1016/j.phrs.2018.02.025. Epub 2018 Mar 1.
946 Biophysical Characterization of SG2NA Variants and their Interaction with DJ-1 and Calmodulin in vitro.Cell Biochem Biophys. 2018 Dec;76(4):451-461. doi: 10.1007/s12013-018-0854-5. Epub 2018 Aug 21.
947 Activation of EZH2 and SUZ12 Regulated by E2F1 Predicts the Disease Progression and Aggressive Characteristics of Bladder Cancer.Clin Cancer Res. 2015 Dec 1;21(23):5391-403. doi: 10.1158/1078-0432.CCR-14-2680. Epub 2015 Aug 12.
948 HIF-1/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer.Oncol Rep. 2016 Mar;35(3):1549-56. doi: 10.3892/or.2015.4536. Epub 2015 Dec 29.
949 The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression.DNA Cell Biol. 2011 Nov;30(11):851-64. doi: 10.1089/dna.2011.1315. Epub 2011 Jul 8.
950 Stratification based on methylation of TBX2 and TBX3 into three molecular grades predicts progression in patients with pTa-bladder cancer.Mod Pathol. 2015 Apr;28(4):515-22. doi: 10.1038/modpathol.2014.145. Epub 2014 Nov 14.
951 TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers.Epigenetics. 2011 Sep 1;6(9):1120-30. doi: 10.4161/epi.6.9.16376. Epub 2011 Sep 1.
952 Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma.Oncotarget. 2016 Jul 26;7(30):47186-47200. doi: 10.18632/oncotarget.9706.
953 Antitumor Activity and Mechanistic Characterization of APE1/Ref-1 Inhibitors in Bladder Cancer.Mol Cancer Ther. 2019 Nov;18(11):1947-1960. doi: 10.1158/1535-7163.MCT-18-1166. Epub 2019 Aug 14.
954 Testis expressed 19 is a novel cancer-testis antigen expressed in bladder cancer.Tumour Biol. 2016 Jun;37(6):7757-65. doi: 10.1007/s13277-015-4567-8. Epub 2015 Dec 22.
955 Long non-coding RNA DILC suppresses bladder cancer cells progression.Gene. 2019 Aug 20;710:193-201. doi: 10.1016/j.gene.2019.06.009. Epub 2019 Jun 7.
956 MMP-2 and MMP-9 as prognostic markers for the early detection of urinary bladder cancer.J Biochem Mol Toxicol. 2019 Apr;33(4):e22275. doi: 10.1002/jbt.22275. Epub 2018 Dec 10.
957 Tight Junction Protein 1 Dysfunction Contributes to Cell Motility in Bladder Cancer.Anticancer Res. 2018 Aug;38(8):4607-4615. doi: 10.21873/anticanres.12765.
958 Novel oncogenic function of mesoderm development candidate 1 and its regulation by MiR-574-3p in bladder cancer cell lines.Int J Oncol. 2012 Apr;40(4):951-9. doi: 10.3892/ijo.2011.1294. Epub 2011 Dec 13.
959 Association between C13ORF31, NOD2, RIPK2 and TLR10 polymorphisms and urothelial bladder cancer.Hum Immunol. 2012 Jun;73(6):668-72. doi: 10.1016/j.humimm.2012.03.006. Epub 2012 Apr 12.
960 Aberrant DNA methylation of T-cell leukemia, homeobox 3 modulates cisplatin sensitivity in bladder cancer.Int J Oncol. 2011 Sep;39(3):727-33. doi: 10.3892/ijo.2011.1049. Epub 2011 May 23.
961 TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPAR-SIRT1 feedback loop in human bladder cancer cells.Cancer Lett. 2018 Feb 1;414:278-293. doi: 10.1016/j.canlet.2017.11.015. Epub 2017 Nov 24.
962 Accurate detection of upper tract urothelial carcinoma in tissue and urine by means of quantitative GDF15, TMEFF2 and VIM promoter methylation.Eur J Cancer. 2014 Jan;50(1):226-33. doi: 10.1016/j.ejca.2013.08.025. Epub 2013 Oct 4.
963 Modification of Occupational Exposures on Bladder Cancer Risk by Common Genetic Polymorphisms.J Natl Cancer Inst. 2015 Sep 14;107(11):djv223. doi: 10.1093/jnci/djv223. Print 2015 Nov.
964 High expression of TMEM40 is associated with the malignant behavior and tumorigenesis in bladder cancer.J Transl Med. 2018 Jan 19;16(1):9. doi: 10.1186/s12967-017-1377-3.
965 A placebo-controlled efficacy study of the intravesical immunomodulators TMX-101 and TMX-202 in an orthotopic bladder cancer rat model.World J Urol. 2018 Nov;36(11):1719-1725. doi: 10.1007/s00345-018-2334-3. Epub 2018 May 16.
966 Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types.Int J Cancer. 2004 May 1;109(5):786-92. doi: 10.1002/ijc.20041.
967 Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study.BMC Cancer. 2009 May 11;9:140. doi: 10.1186/1471-2407-9-140.
968 GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer.Crit Rev Biochem Mol Biol. 2013 Sep-Oct;48(5):446-64. doi: 10.3109/10409238.2013.831024. Epub 2013 Aug 27.
969 ATDC mediates a TP63-regulated basal cancer invasive program.Oncogene. 2019 May;38(18):3340-3354. doi: 10.1038/s41388-018-0646-9. Epub 2019 Jan 14.
970 Gain of 5p15.33 is associated with progression of bladder cancer.Oncology. 2007;72(1-2):132-8. doi: 10.1159/000111132. Epub 2007 Nov 15.
971 TRIO amplification and abundant mRNA expression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer.Am J Pathol. 2004 Jul;165(1):63-9. doi: 10.1016/S0002-9440(10)63275-0.
972 Expression of Testis-Specific Gene Antigen 10 (TSGA10) is Associated with Apoptosis and Cell Migration in Bladder Cancer Cells and Tumor Stage and Overall Survival in Patients with Bladder Cancer.Med Sci Monit. 2019 Jul 16;25:5289-5298. doi: 10.12659/MSM.915682.
973 An inverse relationship between KAI1 expression, invasive ability, and MMP-2 expression and activity in bladder cancer cell lines.Urol Oncol. 2012 Jul-Aug;30(4):502-8. doi: 10.1016/j.urolonc.2010.02.013. Epub 2010 Sep 22.
974 1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino)-pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest.J Pharmacol Exp Ther. 2010 Mar;332(3):795-802. doi: 10.1124/jpet.109.162768. Epub 2009 Dec 2.
975 Allele-specific methylation analysis on upstream promoter region of H19 by methylation-specific PCR with confronting two-pair primers.Int J Oncol. 2004 Nov;25(5):1273-8.
976 N-(4-hydroxyphenyl)retinamide (4-HPR) modulates GADD45 expression in radiosensitive bladder cancer cell lines.Cancer Lett. 2002 Jun 28;180(2):131-7. doi: 10.1016/s0304-3835(01)00864-3.
977 Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst. 2004 Mar 3;96(5):357-63. doi: 10.1093/jnci/djh058.
978 Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer.Cancer Lett. 2005 Jul 8;225(1):121-30. doi: 10.1016/j.canlet.2004.10.047. Epub 2004 Dec 10.
979 Prediction and diagnosis of bladder cancer recurrence based on urinary content of hTERT, SENP1, PPP1CA, and MCM5 transcripts.BMC Cancer. 2010 Nov 24;10:646. doi: 10.1186/1471-2407-10-646.
980 Deletions of p15 and p16 in schistosomal bladder cancer correlate with transforming growth factor-alpha expression.Clin Biochem. 2004 Dec;37(12):1098-104. doi: 10.1016/j.clinbiochem.2004.09.006.
981 Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration.Oncogene. 2008 Nov 6;27(52):6679-89. doi: 10.1038/onc.2008.264. Epub 2008 Aug 25.
982 Urinary NID2 and TWIST1 methylation to augment conventional urine cytology for the detection of bladder cancer.Cancer Biomark. 2017;18(4):381-387. doi: 10.3233/CBM-160261.
983 DBC2 gene is silenced by promoter methylation in bladder cancer.Urol Oncol. 2008 Sep-Oct;26(5):465-9. doi: 10.1016/j.urolonc.2007.08.009. Epub 2008 Jul 21.
984 MiR-1-3p Suppresses the Proliferation, Invasion and Migration of Bladder Cancer Cells by Up-Regulating SFRP1 Expression.Cell Physiol Biochem. 2017;41(3):1179-1188. doi: 10.1159/000464379. Epub 2017 Mar 6.
985 Detection of circulating MUC7-positive cells by reverse transcription-polymerase chain reaction in bladder cancer patients.Int J Urol. 2004 Jan;11(1):38-43. doi: 10.1111/j.1442-2042.2004.00739.x.
986 Expression of proteins FGFR3, PI3K, AKT, p21Waf1/Cip1 and cyclins D1 and D3 in patients with T1 bladder tumours: clinical implications and prognostic significance.Actas Urol Esp. 2017 Apr;41(3):172-180. doi: 10.1016/j.acuro.2016.09.003. Epub 2016 Oct 7.
987 Gene expression study of Aurora-A reveals implication during bladder carcinogenesis and increasing values in invasive urothelial cancer.Urology. 2008 Oct;72(4):873-7. doi: 10.1016/j.urology.2007.12.026. Epub 2008 May 15.