General Information of Disease (ID: DISDV4T7)

Disease Name Urinary bladder cancer
Synonyms
tumour of the bladder; tumor of the bladder; urinary bladder malignant tumour; urinary bladder malignant tumor; urinary bladder malignant neoplasm; urinary bladder cancer; malignant urinary bladder tumour; malignant urinary bladder tumor; malignant urinary bladder neoplasm; malignant tumour of urinary bladder; malignant tumour of the urinary bladder; malignant tumour of the bladder; malignant tumour of bladder; malignant tumor, urinary bladder; malignant tumor of urinary bladder; malignant tumor of the urinary bladder; malignant tumor of the bladder; malignant tumor of bladder; malignant neoplasm, urinary bladder; malignant neoplasm, bladder; malignant neoplasm of urinary bladder; malignant neoplasm of the urinary bladder; malignant neoplasm of the bladder; malignant neoplasm of bladder; malignant bladder tumour; malignant bladder tumor; malignant bladder neoplasm; cancer of urinary bladder; bladder cancer, somatic
Definition A primary or metastatic malignant neoplasm involving the bladder.
Disease Hierarchy
DIS7HACE: Urinary bladder neoplasm
DISAT1Z9: Advanced cancer
DISDQ6PK: Malignant urinary system neoplasm
DISDV4T7: Urinary bladder cancer
Disease Identifiers
MONDO ID
MONDO_0001187
MESH ID
D001749
UMLS CUI
C0005684
OMIM ID
109800
MedGen ID
14150
Orphanet ID
157980
SNOMED CT ID
399326009

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 3 Approved Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
Mitomycin DMH0ZJE Approved Small molecular drug [1]
Thiotepa DMIZKOP Approved Small molecular drug [2]
Valrubicin DMOYJFK Approved Small molecular drug [3]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 457 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ANXA10 TT0NL6U Limited Altered Expression [4]
CCND3 TT1JXNR Limited Biomarker [5]
CCR8 TTE836A Limited Altered Expression [6]
CDK4 TT0PG8F Limited Biomarker [7]
CDK7 TTQYF7G Limited Biomarker [8]
CGA TTFC29G Limited Biomarker [9]
CNTN2 TT2Z1WB Limited Biomarker [10]
CPS1 TT42M75 Limited Biomarker [11]
CPT1B TTDL0NY Limited Altered Expression [12]
CRYZ TTP6UO8 Limited Biomarker [13]
ERBB3 TTSINU2 Limited Biomarker [14]
GABRQ TTXDUR9 Limited Genetic Variation [15]
GGH TTZJRL0 Limited Biomarker [16]
GRM4 TTICZ1O Limited Biomarker [17]
GSN TTUH7OM Limited Biomarker [18]
GSTO1 TTWO3SH Limited Genetic Variation [19]
HNMT TT2B6EV Limited Genetic Variation [20]
HNRNPA2B1 TT8UPW6 Limited Biomarker [21]
HTRA1 TT8POQR Limited Biomarker [22]
IFNW1 TTS2TGF Limited Genetic Variation [23]
IGFBP3 TTZHNQA Limited Genetic Variation [24]
IL25 TTVMO5W Limited Biomarker [25]
ISG15 TTVOH3T Limited Altered Expression [26]
ITGA6 TT165T3 Limited Altered Expression [27]
KDM2A TT8XTY2 Limited Biomarker [28]
KLK2 TTJLNAW Limited Altered Expression [29]
LIMK1 TTWL9TY Limited Genetic Variation [30]
LTBR TTFO0PM Limited Biomarker [31]
MELK TTBZOTY Limited Biomarker [32]
MERTK TTO7LKR Limited Biomarker [33]
NEDD8 TTNDC4K Limited Biomarker [34]
NOTCH2 TT82FVD Limited Biomarker [35]
NUAK1 TT65FL0 Limited Biomarker [36]
P2RY1 TTA93TL Limited Genetic Variation [37]
PABPC1 TTHC8EF Limited Biomarker [38]
PHB TT6U071 Limited Biomarker [39]
PPARG TTT2SVW Limited Biomarker [40]
PRKD1 TTSLUMT Limited Altered Expression [41]
PSIP1 TTH9LDP Limited Biomarker [42]
RALBP1 TTVSRUA Limited Altered Expression [43]
RIPK4 TTB4S01 Limited Biomarker [44]
RSPO3 TT7HJTF Limited Biomarker [45]
S1PR1 TT9JZCK Limited Biomarker [46]
SEMA4D TT5UT28 Limited Altered Expression [47]
SLC22A3 TTG2UMS Limited Altered Expression [48]
SRC TT6PKBN Limited Biomarker [49]
TACC3 TTQ4UFD Limited Biomarker [50]
TPP1 TTOVYPT Limited Biomarker [51]
TPX2 TT0PHL4 Limited Altered Expression [52]
TYMP TTO0IB8 Limited Biomarker [53]
TYMS TTP1UKZ Limited Altered Expression [54]
TYRO3 TTIEMFN Limited Biomarker [33]
ZFP36L1 TT8QVJO Limited Genetic Variation [55]
CDKN2A TTFTWQ8 Disputed Genetic Variation [56]
PINX1 TT4FJ3A Disputed Biomarker [57]
POR TTOQ9GZ Disputed Altered Expression [58]
ACR TTAHE2N moderate Biomarker [59]
AOX1 TT3MOS2 moderate Biomarker [60]
APOA4 TTNC3WS moderate Biomarker [61]
ARAF TT5TURO moderate Altered Expression [62]
BMP10 TTTG6H1 moderate Altered Expression [63]
CD200 TT0BE68 moderate Biomarker [64]
CEACAM1 TTA9CK4 moderate Biomarker [65]
CSF3R TTC70AJ moderate Biomarker [66]
DAPK3 TTERVQN moderate Biomarker [67]
DNM2 TTVRA5G moderate Altered Expression [68]
DSG3 TTEO4P8 moderate Altered Expression [69]
EHMT2 TTS6RZT moderate Altered Expression [70]
EPHB4 TTI4ZX2 moderate Biomarker [71]
FPR1 TT5Y4EM moderate Altered Expression [72]
GDF2 TTAP4T1 moderate Biomarker [73]
GLO1 TTV9A7R moderate Altered Expression [74]
HDGF TTKGV26 moderate Biomarker [75]
IL31 TT1RJXK moderate Genetic Variation [76]
IMP3 TTEJA2R moderate Altered Expression [77]
KCNN3 TT9JH25 moderate Altered Expression [78]
KDM3A TTKXS4A moderate Altered Expression [79]
KDM4A TTZHPB8 moderate Biomarker [80]
KIF5A TTCJPAH moderate Biomarker [81]
KRAS TTM8FR7 moderate Biomarker [82]
LTB4R TTN53ZF moderate Altered Expression [83]
MSI1 TTSM4BA moderate Biomarker [84]
NNT TTKIH76 moderate Biomarker [85]
PLK4 TTGPNZQ moderate Altered Expression [86]
PLOD1 TTEKJP3 moderate Altered Expression [87]
RAPGEF3 TTOE7I0 moderate Altered Expression [88]
RAPGEF4 TTOS63B moderate Altered Expression [88]
RARB TTISP28 moderate Genetic Variation [89]
SCAP TTL6U2P moderate Biomarker [90]
SLC14A1 TTWVJU1 moderate Altered Expression [91]
TLN1 TTQSMFG moderate Altered Expression [92]
USP13 TTVJIO2 moderate Altered Expression [93]
WNT7A TT8NARC moderate Altered Expression [94]
ABCB1 TT3OT40 Strong Biomarker [95]
ABCC1 TTOI92F Strong Altered Expression [96]
ABCC3 TTVLG21 Strong Biomarker [97]
ACHE TT1RS9F Strong Altered Expression [98]
ACKR3 TTRQJTC Strong Biomarker [99]
ACVR1B TTPKHTZ Strong Altered Expression [100]
AGR2 TT9K86S Strong Biomarker [101]
AKR1C3 TT5ZWB6 Strong Genetic Variation [102]
ALCAM TT2AFT6 Strong Altered Expression [103]
ALPI TTHYMUV Strong Genetic Variation [104]
AMACR TTLN1AP Strong Altered Expression [105]
ANG TTURHFP Strong Biomarker [106]
ANPEP TTPHMWB Strong Biomarker [107]
ANXA1 TTUCK4B Strong Biomarker [108]
ANXA2R TTM7D9O Strong Biomarker [107]
AQP3 TTLDNMQ Strong Biomarker [109]
AR TTKPW01 Strong Biomarker [110]
ATG2B TTG6KCU Strong Genetic Variation [111]
ATIC TT9NVXQ Strong Altered Expression [112]
ATM TTKBM7V Strong Biomarker [113]
ATP7B TTOPO51 Strong Genetic Variation [114]
AURKA TTPS3C0 Strong Biomarker [115]
AURKB TT9RTBL Strong Biomarker [116]
AXL TTZPY6J Strong Biomarker [117]
BAP1 TT47RXJ Strong Biomarker [118]
BBC3 TT7JUKC Strong Biomarker [119]
BGN TT0JPVF Strong Altered Expression [120]
BIRC3 TTAIWZN Strong Biomarker [121]
BIRC7 TTHZ8TA Strong Altered Expression [122]
BMI1 TTIPNSR Strong Altered Expression [123]
BRCA2 TTUARD6 Strong Genetic Variation [124]
BSG TT5UJWD Strong Altered Expression [125]
BST2 TT90BJT Strong Posttranslational Modification [126]
C1QBP TTWTD7F Strong Biomarker [127]
CACNA1A TTX4QDJ Strong Biomarker [128]
CASP9 TTB6T7O Strong Altered Expression [129]
CCL17 TTMPHAE Strong Biomarker [130]
CCNA2 TTAMQ62 Strong Biomarker [131]
CCNB1 TT9P6OW Strong Altered Expression [132]
CCNE1 TTCEJ4F Strong Altered Expression [133]
CCNE2 TTLDRGX Strong Biomarker [133]
CCR4 TT7HQD0 Strong Biomarker [134]
CD163 TTTZ9DE Strong Biomarker [135]
CD24 TTCTYNP Strong Biomarker [136]
CD27 TTDO1MV Strong Biomarker [137]
CD276 TT6CQUM Strong Biomarker [138]
CD44 TTWFBT7 Strong Biomarker [139]
CD46 TTMS7DF Strong Biomarker [140]
CD47 TT28S46 Strong Biomarker [141]
CD74 TTCMYP9 Strong Altered Expression [142]
CDC20 TTBKFDV Strong Biomarker [143]
CDC25C TTESBNC Strong Altered Expression [144]
CDH1 TTLAWO6 Strong Genetic Variation [145]
CDK2 TT7HF4W Strong Biomarker [146]
CDKN1A TT9GUW0 Strong Biomarker [147]
CEACAM3 TTPX7I5 Strong Altered Expression [148]
CHEK1 TTTU902 Strong Biomarker [149]
CHEK2 TT9ABMF Strong Therapeutic [150]
CLDN4 TTMTS9H Strong Altered Expression [151]
CLU TTRL76H Strong Biomarker [152]
CMA1 TT8VUE0 Strong Biomarker [153]
COL6A3 TT5WCAH Strong Altered Expression [154]
CRAT TTC8M31 Strong Biomarker [155]
CREB1 TTH4AN3 Strong Altered Expression [156]
CREBBP TTFRCTK Strong Biomarker [157]
CRK TTFEUYR Strong Biomarker [158]
CSF3 TT5TQ2W Strong Therapeutic [159]
CTH TTLQUZS Strong Genetic Variation [160]
CTLA4 TTI2S1D Strong Biomarker [161]
CTSC TT4H0V2 Strong Biomarker [162]
CTSS TTUMQVO Strong Altered Expression [163]
CUL3 TTPCU0Q Strong Biomarker [164]
CXCL1 TTLK1RW Strong Biomarker [165]
CXCL8 TTCTE1G Strong Biomarker [166]
CXCR2 TT30C9G Strong Biomarker [165]
CYP2B6 TTMH124 Strong Biomarker [167]
CYP3A5 TTHS0OK Strong Biomarker [168]
DBH TTYIP79 Strong Genetic Variation [169]
DCK TTJOCE4 Strong Altered Expression [170]
DCLK1 TTOHTCY Strong Biomarker [171]
DCN TTB3XAN Strong Biomarker [172]
DDR1 TTI1FPZ Strong Altered Expression [173]
DEFB4A TTIVY12 Strong Altered Expression [174]
DEK TT1NMGV Strong Biomarker [175]
DFFA TTYVQ9C Strong Biomarker [176]
DHCR24 TTTK0NH Strong Biomarker [177]
DLK1 TTF4AVB Strong Biomarker [178]
DLL4 TTV23LH Strong Altered Expression [179]
DNMT3B TT6VZ78 Strong Posttranslational Modification [180]
E2F3 TTWIJYH Strong Altered Expression [181]
EBI3 TTJF68X Strong Biomarker [182]
EBP TT4VQZX Strong Genetic Variation [183]
EDNRB TT3ZTGU Strong Altered Expression [184]
EGFR TTGKNB4 Strong Biomarker [185]
EIF4EBP1 TTKGEBL Strong Posttranslational Modification [186]
EIF5A2 TTH53G9 Strong Biomarker [187]
ENOX2 TTUJZRL Strong Altered Expression [188]
EP300 TTGH73N Strong Biomarker [189]
ERAP2 TTVGS1C Strong Altered Expression [190]
ESR1 TTZAYWL Strong Biomarker [191]
ESR2 TTOM3J0 Strong Biomarker [192]
ESRRA TTPNQAC Strong Biomarker [193]
ETS2 TT9AH0M Strong Altered Expression [194]
FABP4 TTHWMFZ Strong Altered Expression [195]
FANCA TTV5HJS Strong Biomarker [196]
FANCF TTNZKFJ Strong Biomarker [197]
FAS TT7LTUJ Strong Genetic Variation [198]
FASLG TTO7014 Strong Genetic Variation [198]
FASN TT7AOUD Strong Biomarker [199]
FGF4 TTCEKVZ Strong Biomarker [200]
FHL1 TTI7ENL Strong Altered Expression [201]
FOLH1 TT9G4N0 Strong Altered Expression [202]
FOXM1 TTD3KOX Strong Altered Expression [132]
FOXQ1 TTEJZOL Strong Altered Expression [203]
FSCN1 TTTRS9B Strong Altered Expression [204]
FYN TT2B9KF Strong Biomarker [205]
GATA3 TT45KOB Strong Altered Expression [206]
GJB2 TTRGZX3 Strong Altered Expression [207]
GLI1 TTJOMH6 Strong Altered Expression [208]
GLI2 TT045OH Strong Biomarker [208]
GLIPR1 TTEQF1O Strong Altered Expression [209]
GNRH1 TT0ID4A Strong Biomarker [210]
GNRHR TT8R70G Strong Biomarker [210]
GPER1 TTDSB34 Strong Biomarker [211]
GPNMB TT7315J Strong Altered Expression [212]
GPR137 TTATO6X Strong Altered Expression [213]
GPR87 TTO897C Strong Altered Expression [214]
GUSB TTHS7CM Strong Altered Expression [215]
HDAC4 TTTQGH8 Strong Altered Expression [216]
HDAC8 TTT6LFV Strong Biomarker [217]
HIPK2 TTOB49C Strong Biomarker [218]
HMGA2 TTSTVM0 Strong Biomarker [92]
HOXA13 TTN26OM Strong Biomarker [219]
HOXB13 TTZ6I58 Strong Genetic Variation [220]
HPGDS TTCYE56 Strong Genetic Variation [221]
HRAS TT28ZON Strong Biomarker [222]
HRH1 TTTIBOJ Strong Altered Expression [223]
HSPB3 TTLH8WG Strong Altered Expression [224]
HSPE1 TTWYMFE Strong Biomarker [225]
HTATIP2 TTC6IX5 Strong Biomarker [226]
IAPP TTHN8EM Strong Genetic Variation [104]
IDO1 TTZJYKH Strong Altered Expression [227]
IFNA2 TTSIUJ9 Strong Biomarker [228]
IFNAR1 TTSYFMA Strong Altered Expression [229]
IFNAR2 TTMQB37 Strong Altered Expression [229]
IFNB1 TT4TZ8J Strong Biomarker [230]
IGF2R TTPNE41 Strong Biomarker [231]
IGFBP1 TTCJTWF Strong Biomarker [232]
IGFBP2 TTU4QSN Strong Biomarker [233]
IGFBP5 TTDWEA8 Strong Altered Expression [232]
IL15 TTJFA35 Strong Biomarker [234]
IL17D TTC5LTG Strong Genetic Variation [235]
IL20 TTNZMY2 Strong Biomarker [236]
IL5RA TTXH9AD Strong Biomarker [237]
ITCH TT5SEWD Strong Biomarker [238]
ITGA5 TTHIZP9 Strong Biomarker [239]
ITGAV TTT1R2L Strong Altered Expression [240]
ITGB1 TTBVIQC Strong Altered Expression [241]
ITPR1 TT5HWAT Strong Biomarker [242]
ITPR2 TTK9OV3 Strong Biomarker [242]
ITPR3 TTH1769 Strong Biomarker [242]
KAT2B TTVK7SB Strong Altered Expression [243]
KCNJ11 TT329V4 Strong Altered Expression [244]
KDM5B TTCLI75 Strong Altered Expression [245]
KHDRBS1 TTAT6C7 Strong Altered Expression [112]
KIF20B TTQECT2 Strong Biomarker [246]
KISS1 TTU2O6T Strong Biomarker [247]
KLF4 TTTI53X Strong Biomarker [248]
KLK3 TTS78AZ Strong Altered Expression [29]
KMT2A TT1GNDM Strong Genetic Variation [249]
KRT19 TT3JF9E Strong Biomarker [250]
KRT6A TT2FX8W Strong Biomarker [251]
LAPTM4B TTEJQT0 Strong Biomarker [252]
LASP1 TTZJA87 Strong Altered Expression [253]
LDHA TTW76JE Strong Altered Expression [254]
LIMK2 TTASMD8 Strong Genetic Variation [30]
LIN28A TTO50LN Strong Altered Expression [255]
LPAR6 TTZDAGB Strong Genetic Variation [256]
LRP6 TTSXOWE Strong Altered Expression [257]
LTA TTP73TM Strong Genetic Variation [258]
LTB TTHQ6US Strong Biomarker [259]
LY6K TT5GKHN Strong Altered Expression [260]
MAD1L1 TTNE9U7 Strong Biomarker [261]
MAGEA3 TTWSKHD Strong Biomarker [262]
MAP2K2 TT8H9GB Strong Biomarker [263]
MAP2K7 TT6QY3J Strong Biomarker [264]
MAP3K14 TT4LIAC Strong Biomarker [265]
MAP3K7 TTJQT60 Strong Posttranslational Modification [266]
MAP3K8 TTGECUM Strong Biomarker [267]
MAP4 TT0VFPN Strong Altered Expression [268]
MAPK9 TT3IVG2 Strong Altered Expression [269]
MAPKAPK2 TTMUG9D Strong Biomarker [270]
MAS1 TTOISYB Strong Biomarker [162]
MCM7 TT1RM3F Strong Biomarker [271]
MDK TTV8UE7 Strong Altered Expression [272]
MDM4 TT9OUDQ Strong Biomarker [273]
MKI67 TTB4UNG Strong Biomarker [274]
MMP10 TTXLEG7 Strong Altered Expression [275]
MMP11 TTZW4MV Strong Altered Expression [276]
MMP12 TTXZ0KQ Strong Genetic Variation [277]
MMP13 TTHY57M Strong Biomarker [130]
MMP16 TTNP4CU Strong Biomarker [278]
MMP8 TTGA1IV Strong Genetic Variation [279]
MPO TTVCZPI Strong Genetic Variation [280]
MRC1 TTKV8W5 Strong Posttranslational Modification [281]
MSH2 TTCAWRT Strong Biomarker [282]
MSI2 TTTXQF6 Strong Biomarker [283]
MSR1 TT2TDH9 Strong Biomarker [284]
MST1R TTBQ3OC Strong Biomarker [285]
MTDH TTH6SA5 Strong Biomarker [286]
MTNR1B TT32JK8 Strong Altered Expression [287]
MTOR TTCJG29 Strong Biomarker [288]
MUC1 TTBHFYQ Strong Biomarker [289]
MUTYH TTNB0ZK Strong Genetic Variation [290]
MYC TTNQ5ZP Strong Altered Expression [244]
MYCN TT9JBY5 Strong Biomarker [291]
MYLK TT18ETS Strong Biomarker [292]
NAAA TTMN4HY Strong Biomarker [293]
NAMPT TTD1WIG Strong Biomarker [294]
NCOA3 TT124R0 Strong Altered Expression [295]
NDUFA13 TTRU1NG Strong Biomarker [296]
NECTIN4 TTPO9EG Strong Biomarker [297]
NELL1 TT7H4BF Strong Altered Expression [298]
NOTCH1 TTB1STW Strong Biomarker [299]
NPEPPS TT371QC Strong Biomarker [300]
NPM1 TTHBS98 Strong Biomarker [301]
NR1I3 TTRANFM Strong Biomarker [140]
NT5E TTK0O6Y Strong Altered Expression [302]
NUAK2 TTHVOTQ Strong Altered Expression [303]
OSMR TTAH0KM Strong Genetic Variation [304]
PAK1 TTFN95D Strong Altered Expression [305]
PBK TTMY6BZ Strong Biomarker [306]
PBRM1 TTH8ZRL Strong Altered Expression [307]
PCSK1 TTED9LZ Strong Biomarker [251]
PEMT TT735V2 Strong Genetic Variation [308]
PFKFB3 TTTHMQJ Strong Biomarker [309]
PGRMC1 TTY3LAZ Strong Biomarker [310]
PIGU TT2LHI6 Strong Biomarker [311]
PIK3CB TT9H4P3 Strong Biomarker [312]
PLAU TTGY7WI Strong Biomarker [313]
PLK2 TT976FS Strong Biomarker [314]
PLOD2 TT8MEUD Strong Biomarker [315]
PML TTLH9NY Strong Altered Expression [316]
PNP TTMCF1Y Strong Biomarker [317]
POLB TTA0XPV Strong Biomarker [318]
PPM1A TTLA7IX Strong Biomarker [319]
PPM1D TTENJAB Strong Biomarker [320]
PPP1CA TTFLH0E Strong Biomarker [321]
PPP5C TTTW7FJ Strong Biomarker [322]
PRKDC TTK3PY9 Strong Genetic Variation [323]
PRMT5 TTR1D7X Strong Biomarker [324]
PRSS8 TTT4N0Q Strong Altered Expression [325]
PSCA TT9T4AV Strong Genetic Variation [326]
PTBP1 TTWMX0U Strong Biomarker [327]
PTGIS TTLXKZR Strong Altered Expression [328]
PTGS2 TTVKILB Strong Biomarker [329]
PTK2 TTON5IT Strong Biomarker [330]
PTK6 TT6TH8V Strong Biomarker [331]
PTP4A3 TT7YM8D Strong Altered Expression [332]
RASA1 TTPNZ1F Strong Biomarker [333]
RENBP TTZCG0Q Strong Genetic Variation [334]
RGS2 TTKB7T3 Strong Posttranslational Modification [335]
RGS4 TTGTKX9 Strong Genetic Variation [336]
RGS6 TTJ96M8 Strong Altered Expression [337]
RHOA TTP2U16 Strong Biomarker [338]
ROBO1 TTND1YP Strong Biomarker [339]
ROBO4 TT3S9TY Strong Biomarker [340]
ROCK1 TTZN7RP Strong Biomarker [341]
ROCK2 TTGWKQJ Strong Altered Expression [342]
RPS6KB1 TTG0U4H Strong Biomarker [343]
RRM1 TTWP0NS Strong Biomarker [344]
RRM2 TT1S4LJ Strong Altered Expression [345]
RUNX3 TTKCVO7 Strong Posttranslational Modification [346]
RXRA TT6PEUO Strong Biomarker [347]
S100A4 TTPR5SX Strong Biomarker [348]
S100A8 TT4AF6N Strong Altered Expression [349]
S100A9 TT0TMQG Strong Biomarker [350]
S100B TTQ0V86 Strong Altered Expression [351]
SATB1 TTLFRIC Strong Altered Expression [352]
SCD TT6RIOV Strong Altered Expression [353]
SDC1 TTYDSVG Strong Biomarker [354]
SERPINB5 TT1KW50 Strong Biomarker [355]
SLC12A7 TTU2PCD Strong Biomarker [107]
SLC16A1 TTN1J82 Strong Biomarker [153]
SLC19A1 TT09I7D Strong Altered Expression [356]
SLC34A2 TTQPZTM Strong Biomarker [357]
SLC38A3 TTMAVJQ Strong Genetic Variation [358]
SLC7A11 TTBZMIO Strong Biomarker [359]
SLCO1B1 TTFGXEB Strong Biomarker [360]
SLCO1B3 TTU86P0 Strong Genetic Variation [360]
SLCO2B1 TTDL3UZ Strong Genetic Variation [360]
SLIT2 TTDWK85 Strong Altered Expression [339]
SMYD3 TTKLJYX Strong Biomarker [361]
SOD2 TT9O4C5 Strong Altered Expression [362]
SORD TTLSRBZ Strong Genetic Variation [363]
SOX2 TTCNOT6 Strong Altered Expression [364]
SPN TTOZAX0 Strong Biomarker [289]
SREBF2 TTRQ4AP Strong Genetic Variation [365]
SSRP1 TTETDKQ Strong Altered Expression [366]
SSTR1 TTIND6G Strong Altered Expression [367]
SSTR3 TTJX3UE Strong Altered Expression [367]
STAB1 TTJFEOC Strong Biomarker [350]
STS TTHM0R1 Strong Biomarker [368]
SUV39H1 TTUWQTK Strong Biomarker [369]
TACSTD2 TTP2HE5 Strong Biomarker [370]
TAGLN TTDRZ9H Strong Biomarker [371]
TAGLN2 TTP6BIJ Strong Biomarker [372]
TBK1 TTMP03S Strong Biomarker [373]
TERF2 TT5XSLT Strong Biomarker [374]
TFRC TT8MG4S Strong Altered Expression [375]
TGFB3 TTWOMY8 Strong Biomarker [376]
TMPRSS6 TTL9KE7 Strong Altered Expression [287]
TNFRSF10A TT5WLRX Strong Genetic Variation [377]
TNFRSF14 TTWGTC1 Strong Altered Expression [378]
TNKS TTVUSO7 Strong Altered Expression [379]
TOP1 TTGTQHC Strong Biomarker [380]
TOP2A TTCGY2K Strong Biomarker [381]
TPH1 TTZSJHV Strong Altered Expression [155]
TRIM24 TT9Q7AE Strong Altered Expression [382]
TRIM59 TT613U4 Strong Biomarker [383]
TRPM2 TTEBMN7 Strong Biomarker [384]
TRPM7 TTFPVZO Strong Biomarker [385]
TRPV1 TTMI6F5 Strong Altered Expression [386]
TRPV2 TTBECWA Strong Biomarker [387]
TTK TTP7EGM Strong Biomarker [388]
UBC TTBP3XA Strong Biomarker [389]
UBE2T TT0A1R8 Strong Biomarker [390]
ULK1 TT4D7MJ Strong Altered Expression [391]
UMPS TTAFJUD Strong Altered Expression [53]
USP7 TTXU3EQ Strong Biomarker [392]
UTS2R TTW5UDX Strong Biomarker [393]
VANGL1 TT18WJB Strong Biomarker [394]
VEGFB TTPJQHE Strong Altered Expression [395]
VEGFC TT0QUFV Strong Biomarker [21]
VHL TTEMWSD Strong Biomarker [396]
VTCN1 TTCK85E Strong Biomarker [397]
WDR5 TT7OFWB Strong Biomarker [398]
WNT5A TTKG7F8 Strong Biomarker [399]
XIAP TTK3WBU Strong Altered Expression [244]
XRCC5 TTCB9KW Strong Genetic Variation [400]
YAP1 TT8UN2D Strong Biomarker [288]
ZNF224 TT1CDXL Strong Biomarker [401]
BRD2 TTDP48B Definitive Biomarker [402]
CXCR4 TTBID49 Definitive Biomarker [99]
CYP1A2 TTS1DTU Definitive Genetic Variation [403]
CYP2C19 TTZ58XG Definitive Altered Expression [404]
DEPDC1 TT8S9CM Definitive Biomarker [405]
E2F1 TTASI04 Definitive Biomarker [406]
FOSL1 TTY8LZG Definitive Biomarker [407]
FOXO1 TTLRVIA Definitive Biomarker [408]
GSTA1 TT4P8DE Definitive Genetic Variation [409]
HSP90AA1 TT78R5H Definitive Biomarker [410]
ILK TT7ALZG Definitive Biomarker [411]
LTB4R2 TTVJX54 Definitive Biomarker [259]
MLH1 TTISG27 Definitive Biomarker [412]
NR1H2 TTXA6PH Definitive Biomarker [413]
PDCD1 TTNBFWK Definitive Biomarker [414]
PLK1 TTH4IP0 Definitive Altered Expression [415]
PRTN3 TT5MLC4 Definitive Biomarker [416]
RECK TTRZBW7 Definitive Biomarker [417]
RPE65 TTBOH16 Definitive Biomarker [418]
SNAP25 TTYQWA0 Definitive Biomarker [419]
TWIST1 TTX1MY7 Definitive Biomarker [420]
ZEB2 TTT2WK4 Definitive Biomarker [421]
------------------------------------------------------------------------------------
⏷ Show the Full List of 457 DTT(s)
This Disease Is Related to 12 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC11A1 DT650XW Strong Genetic Variation [422]
SLC16A10 DTPAQJO Strong Altered Expression [423]
SLC26A6 DTVGOLN Strong Biomarker [424]
SLC2A3 DT9SQ3L Strong Biomarker [425]
SLC30A1 DT1BO38 Strong Biomarker [426]
SLC31A1 DTP8L4F Strong Altered Expression [427]
SLC35A2 DT0567K Strong Genetic Variation [428]
SLC38A6 DTZUHR9 Strong Genetic Variation [358]
SLC39A11 DTEOAND Strong Genetic Variation [429]
SLC39A2 DTL8VXO Strong Genetic Variation [430]
SLC45A3 DTGEFXH Strong Genetic Variation [431]
SLCO6A1 DTIFXNS Strong Biomarker [432]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 DTP(s)
This Disease Is Related to 40 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP27A1 DEBS639 Limited Biomarker [433]
GGCT DEKW6PB Limited Biomarker [434]
GSTO2 DEHMPZR Limited Genetic Variation [19]
HK1 DEDMAGE Limited Therapeutic [435]
MT1A DE5ME8A Limited Biomarker [436]
AKR1C4 DEAJN47 moderate Genetic Variation [437]
DHRS9 DEGTU5I moderate Genetic Variation [437]
MAT1A DEQ6NC9 moderate Biomarker [438]
UCK2 DETN1O0 moderate Altered Expression [439]
ACP3 DEDW5H6 Strong Biomarker [440]
ACSS2 DEE76VW Strong Biomarker [441]
ADH1C DEM1HNL Strong Genetic Variation [442]
AKR1A1 DED2FW3 Strong Biomarker [443]
AKR1B10 DEP6GT1 Strong Altered Expression [444]
AKR1C1 DE7P2FB Strong Biomarker [445]
AOC2 DE8DP90 Strong Biomarker [446]
AS3MT DE9KJP3 Strong Genetic Variation [447]
CYP2A13 DEXZA9U Strong Biomarker [448]
CYP4B1 DEMF740 Strong Genetic Variation [449]
DIO3 DET89OV Strong Altered Expression [178]
GLS DE3E0VT Strong Altered Expression [450]
GSTZ1 DEQPEMB Strong Genetic Variation [451]
HSD3B1 DERDQWN Strong Biomarker [452]
HSD3B2 DEN0GVQ Strong Biomarker [452]
INPP4A DEBJ2NL Strong Biomarker [453]
MT2A DEFKGT7 Strong Biomarker [436]
MTARC1 DE1VDSF Strong Altered Expression [454]
NAT10 DEZV4AP Strong Biomarker [455]
NNMT DECVGJ3 Strong Altered Expression [456]
P3H2 DELB5PA Strong Genetic Variation [457]
PON2 DEHJU7E Strong Biomarker [458]
RDH14 DEWDJU4 Strong Altered Expression [459]
SULT1A1 DEYWLRK Strong Biomarker [460]
THOP1 DE95LJC Strong Biomarker [282]
UGT1A10 DEL5N6Y Strong Genetic Variation [461]
UGT1A6 DESD26P Strong Altered Expression [462]
UGT1A7 DEZO4N3 Strong Genetic Variation [463]
UGT1A8 DE2GB8N Strong Genetic Variation [461]
UGT1A9 DE85D2P Strong Altered Expression [462]
UGT2B7 DEB3CV1 Strong Genetic Variation [464]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 DME(s)
This Disease Is Related to 685 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ABCB10 OT1C44F9 Limited Biomarker [465]
ADAM12 OTZKOTDB Limited Altered Expression [466]
ADGRG6 OTY2UBXO Limited Genetic Variation [467]
AFF4 OTTL5Y8R Limited Biomarker [468]
AK4 OTA0T02Q Limited Biomarker [469]
AMFR OTQRX7LC Limited Biomarker [470]
ARPC4 OT0ZE01B Limited Altered Expression [471]
ASXL2 OTNG4E2M Limited Biomarker [196]
CBX5 OT8VYY84 Limited Altered Expression [472]
CCDC6 OTXRQDYG Limited Biomarker [392]
CD81 OTQFXNAZ Limited Altered Expression [473]
CDCP1 OTD7RRWK Limited Biomarker [474]
CENPO OTXAH83Y Limited Altered Expression [475]
CFL2 OTE2W0DH Limited Altered Expression [476]
CHD6 OTEHW1U2 Limited Biomarker [477]
DLG1 OTCRZYWT Limited Genetic Variation [465]
DUSP2 OTH54FMR Limited Biomarker [478]
ECM1 OT1K65VW Limited Altered Expression [479]
ERH OTJDWX99 Limited Biomarker [480]
ESPL1 OTMGEVOK Limited Biomarker [481]
ETV5 OTE2OBM4 Limited Biomarker [482]
FGF9 OT2SKDGM Limited Biomarker [483]
FRS2 OTDMD800 Limited Genetic Variation [467]
GTF2H4 OTPD1DIU Limited Biomarker [42]
GTSE1 OTPP742Z Limited Altered Expression [132]
H2AZ1 OT3KJJNQ Limited Altered Expression [484]
HIC1 OTI9TWY4 Limited Biomarker [485]
HPSE2 OTGEPP8V Limited Genetic Variation [486]
HS3ST3B1 OTK53GUD Limited Altered Expression [487]
IL17RA OTVVI8ER Limited Biomarker [25]
IL17RB OT0KDNSF Limited Biomarker [25]
IL17RC OTEFOBSS Limited Biomarker [25]
ISL1 OTVNVKAX Limited Biomarker [488]
ISYNA1 OT49ONSE Limited Altered Expression [489]
KIF15 OTJRJEXL Limited Biomarker [264]
KMT2C OTC59BCO Limited Biomarker [477]
KMT2D OTTVHCLY Limited Genetic Variation [20]
KRT16 OTGA0EQN Limited Biomarker [490]
LINGO2 OT3N88Q1 Limited Genetic Variation [23]
LURAP1 OTJ1EZDJ Limited Genetic Variation [491]
MAGEA9 OTWGX2SD Limited Biomarker [492]
MED1 OTOO24C4 Limited Altered Expression [493]
MEIS2 OTG4ADLM Limited Biomarker [494]
MIB1 OT5C404P Limited Biomarker [495]
MTHFD1L OTV01EFP Limited Altered Expression [496]
MYBL2 OTZ3JX8Q Limited Altered Expression [497]
NCOR1 OT04XNOU Limited Biomarker [477]
NECTIN2 OTIE0W6O Limited Biomarker [498]
NFIX OT1DPZAE Limited Biomarker [499]
NRBP1 OTRWEJ65 Limited Biomarker [500]
PDLIM5 OTLQVV22 Limited Genetic Variation [30]
PEG10 OTWD2278 Limited Biomarker [257]
PHF14 OTZT3GV1 Limited Biomarker [501]
PKD2 OTIXBU8H Limited Biomarker [41]
PLCL1 OTJL2C79 Limited Biomarker [502]
PODXL OTPNQXF3 Limited Biomarker [503]
PTMA OT2W4T1M Limited Biomarker [504]
RAB14 OTF1J0TB Limited Biomarker [505]
RAB1A OTKPHRD0 Limited Biomarker [506]
RAB38 OTU0NZU0 Limited Biomarker [507]
RACGAP1 OTQE8IEH Limited Biomarker [180]
RELB OTU3QYEF Limited Biomarker [31]
RHOBTB2 OT2DATFX Limited Posttranslational Modification [508]
RNH1 OT6EC79B Limited Altered Expression [509]
ROMO1 OTIEYVBW Limited Altered Expression [510]
RWDD4 OTH18ZIC Limited Biomarker [511]
SART3 OTC1AM7S Limited Biomarker [512]
SMC1A OT9ZMRK9 Limited Biomarker [196]
SMC1B OTQVMF74 Limited Biomarker [196]
SPRR2A OT62ZU6B Limited Biomarker [29]
STK32C OTN4HBAA Limited Biomarker [513]
STX1A OTSBUZB4 Limited Altered Expression [514]
TEAD4 OTJS0T2B Limited Biomarker [133]
TEF OTY3LAD9 Limited Altered Expression [515]
TPM2 OTA1L0P8 Limited Altered Expression [476]
CISD3 OT0MM1MW Disputed Genetic Variation [516]
CLPTM1L OTDJWQXI Disputed Genetic Variation [461]
SPEN OT37A2MD Disputed Genetic Variation [516]
ACSS1 OT6C1WQD moderate Altered Expression [517]
AGPAT4 OT5CTQKO moderate Altered Expression [69]
APLF OTYUR3AH moderate Biomarker [518]
ARHGAP18 OTYMJP6H moderate Biomarker [519]
BHLHE22 OTZUQY5L moderate Altered Expression [520]
BZW2 OTBT0A1B moderate Biomarker [521]
CDC6 OTX93FE7 moderate Biomarker [522]
CDCA2 OTX8UF9J moderate Altered Expression [523]
CENPM OTYK9KOX moderate Biomarker [524]
CETN3 OTG4PL7H moderate Biomarker [525]
CHGB OT7SAQT2 moderate Genetic Variation [526]
CIZ1 OT3UKHPI moderate Biomarker [527]
COL13A1 OTM9IM6J moderate Biomarker [528]
DAAM1 OT0VHIYZ moderate Biomarker [86]
DDX31 OTNWY581 moderate Altered Expression [529]
DGCR8 OT62LXE4 moderate Biomarker [530]
DSTN OTMXO4YB moderate Biomarker [18]
DXO OTFDTNW4 moderate Biomarker [531]
EIF3A OTFABY9G moderate Altered Expression [532]
ELF3 OTUTLEQO moderate Biomarker [533]
EOMES OTB9VQFA moderate Biomarker [107]
ESM1 OT331Y8V moderate Biomarker [534]
EYA4 OTINGR3Z moderate Biomarker [535]
FH OTEQWU6Q moderate Altered Expression [536]
GPX2 OTXI2NTI moderate Biomarker [537]
GZMA OT43R33L moderate Altered Expression [538]
HOXA10 OTB6GQ09 moderate Altered Expression [539]
HOXB2 OTTD6HMV moderate Biomarker [540]
HSDL2 OT4IN0MV moderate Biomarker [541]
IFIT5 OTYTSO77 moderate Biomarker [542]
IPO11 OTG19WN0 moderate Altered Expression [147]
KDM4B OT5P1UPY moderate Altered Expression [543]
KIF3A OTMUBSSK moderate Altered Expression [544]
KIFC1 OTNQDS00 moderate Biomarker [545]
KLF9 OTBFEJRQ moderate Altered Expression [546]
KRT15 OTS6WLF7 moderate Altered Expression [547]
KRT6B OTBXJYHY moderate Altered Expression [548]
LCE4A OT6VQPC1 moderate Biomarker [549]
LHPP OT9AGAIJ moderate Biomarker [550]
MARCHF1 OTI2EYO6 moderate Biomarker [551]
MEX3C OT8AJG1I moderate Altered Expression [552]
NET1 OTZHNMJV moderate Biomarker [553]
NOC2L OTNT7R33 moderate Genetic Variation [554]
NPLOC4 OTC1WUVF moderate Biomarker [531]
NUDT1 OTZSES3W moderate Biomarker [555]
NUDT21 OTZHKWAR moderate Altered Expression [556]
PADI2 OTT40K94 moderate Biomarker [557]
PCBP2 OTXCN9CG moderate Biomarker [558]
PCMT1 OTGYVSGU moderate Altered Expression [559]
PNO1 OT010GIS moderate Biomarker [560]
POLG2 OTDBMZJB moderate Genetic Variation [561]
PPP2R2A OT9297OG moderate Biomarker [562]
PRC1 OTHD0XS0 moderate Altered Expression [563]
PRF1 OTFVXD7H moderate Altered Expression [538]
RAD21 OTQS84ZF moderate Biomarker [381]
RAD54L OTEGMAKG moderate Biomarker [564]
RASSF6 OT25GVWY moderate Altered Expression [565]
RBM5 OTCBWHHV moderate Biomarker [566]
RGS20 OT6CGYHW moderate Biomarker [567]
SCIN OT6U09OL moderate Altered Expression [568]
SEC11A OT06L834 moderate Altered Expression [569]
SEMG1 OT6Z4BPQ moderate Genetic Variation [526]
SIGLEC1 OTNWSQA9 moderate Biomarker [570]
SLC35F2 OTSAD4EQ moderate Altered Expression [571]
SOX18 OTPUMHWA moderate Altered Expression [572]
SOX7 OTOZOFAG moderate Biomarker [573]
STIP1 OT7TXLOX moderate Altered Expression [574]
TFAP2C OTUDIW05 moderate Altered Expression [575]
TFCP2L1 OT7QIJ0X moderate Posttranslational Modification [576]
THBS2 OTXET551 moderate Biomarker [577]
TMSB10 OTLVZ13T moderate Altered Expression [578]
AADAC OT8VACT2 Strong Biomarker [579]
ACTN1 OTUCLNXH Strong Biomarker [580]
ACTN4 OTCNZAJ5 Strong Biomarker [581]
ACTR1B OTGBCKLO Strong Biomarker [251]
ADAM15 OTZ7VLTP Strong Biomarker [582]
AGFG1 OTI8ZKC4 Strong Biomarker [583]
AGL OTWBM7WY Strong Biomarker [584]
AGO2 OT4JY32Q Strong Altered Expression [585]
AHSA1 OTC7AFHT Strong Altered Expression [586]
ALKBH1 OTADGU5D Strong Biomarker [587]
ALKBH2 OTSQW0BG Strong Altered Expression [587]
ALKBH3 OTS1CD9Z Strong Biomarker [588]
ALKBH8 OTXN70DV Strong Altered Expression [589]
ALPP OTZU4G9W Strong Genetic Variation [104]
ANGPTL6 OTOQ5W67 Strong Biomarker [590]
ANKFY1 OTHT028D Strong Biomarker [107]
ANKRD36B OT3MW415 Strong Altered Expression [591]
ANKRD52 OTDAORW4 Strong Biomarker [592]
ANXA3 OTDD8OI7 Strong Altered Expression [225]
APAF1 OTJWIVY0 Strong Altered Expression [593]
APOBEC3A OTYO6F5P Strong Altered Expression [594]
APOBEC3B OTHLNI51 Strong Biomarker [594]
ARHGAP24 OTCQCEZS Strong Altered Expression [595]
ARID1A OTRWDV3P Strong Biomarker [596]
ARID1B OTILK3Q7 Strong Altered Expression [597]
ARL6IP5 OTYZ6BEQ Strong Genetic Variation [598]
ARMC8 OTNAXGM7 Strong Biomarker [599]
ARR3 OTRZ00CH Strong Biomarker [140]
ASAP1 OT4DLRYY Strong Biomarker [107]
ASPM OTKXQMNA Strong Altered Expression [600]
ASS1 OT4ZMG0Q Strong Altered Expression [601]
ATAD1 OTJ02XFL Strong Genetic Variation [334]
ATG12 OTJRO09Y Strong Genetic Variation [391]
ATP5F1D OTXTAG2V Strong Biomarker [107]
AXIN1 OTRGZGZ5 Strong Biomarker [602]
B4GALT1 OTBCXEK7 Strong Altered Expression [603]
B4GALT3 OTHX77K8 Strong Biomarker [604]
BAMBI OTCEJ8W5 Strong Biomarker [605]
BCAM OTHZOPSD Strong Biomarker [606]
BCAN OTPVY3ZR Strong Biomarker [607]
BCL10 OT47MCLI Strong Biomarker [608]
BCL2L12 OTS6IFZY Strong Altered Expression [423]
BCLAF1 OT7T8H6A Strong Biomarker [361]
BLCAP OTGJVU0C Strong Biomarker [609]
BLM OTEJOAJX Strong Biomarker [524]
BLNK OTSSPF6F Strong Biomarker [610]
BPTF OTD1RZAD Strong Biomarker [611]
BRMS1 OTV5A6LL Strong Altered Expression [612]
BTG2 OTZF6K1H Strong Altered Expression [613]
CADM1 OTRWG9QS Strong Biomarker [614]
CALHM1 OTUZPEYQ Strong Biomarker [107]
CAMKMT OTLJBRUW Strong Biomarker [615]
CARD10 OT2RPM4I Strong Biomarker [616]
CBLIF OTNE20WU Strong Biomarker [617]
CBX8 OT4U5V1T Strong Biomarker [251]
CCAR2 OTLUDG5T Strong Biomarker [618]
CCDC34 OTZ3AGSQ Strong Biomarker [619]
CCL1 OT23NON8 Strong Altered Expression [620]
CCL28 OTY6XNQ7 Strong Biomarker [621]
CCN3 OTOW5YL4 Strong Altered Expression [622]
CCNB2 OTIEXTDK Strong Biomarker [623]
CCNH OTKDU3SR Strong Genetic Variation [624]
CCNJ OTCR4WVV Strong Genetic Variation [625]
CD164 OTZ7FIU8 Strong Altered Expression [626]
CDC42EP3 OTUZ3U9Z Strong Biomarker [627]
CDK15 OT8S67QS Strong Biomarker [265]
CDK16 OTUBXIIT Strong Biomarker [265]
CDK2AP2 OTR99SJ8 Strong Posttranslational Modification [628]
CDKAL1 OTA0SGNE Strong Genetic Variation [461]
CDKN2B OTAG24N1 Strong Altered Expression [629]
CEACAM7 OTKFDTZY Strong Altered Expression [148]
CENPU OTQ4TZRS Strong Altered Expression [630]
CEP128 OT922YCJ Strong Biomarker [631]
CEP55 OTGSG2PA Strong Altered Expression [415]
CERS2 OTRAHYYP Strong Biomarker [632]
CFAP45 OT8I8ZHH Strong Biomarker [633]
CFHR1 OT72R16T Strong Biomarker [634]
CFL1 OTT6D5MH Strong Altered Expression [635]
CHAF1A OTXSSY4H Strong Altered Expression [243]
CHD5 OTS5EVHH Strong Biomarker [249]
CIB2 OT9ZJX1I Strong Posttranslational Modification [636]
CILK1 OTWOYEYP Strong Biomarker [265]
CIP2A OTVS2GXA Strong Biomarker [637]
CIRBP OTXWTPBL Strong Biomarker [328]
CISH OT8T5NYL Strong Biomarker [638]
CKS2 OTPTMHIV Strong Biomarker [639]
CLASP2 OT5YX0YB Strong Biomarker [640]
CLCA4 OTCRR1M9 Strong Biomarker [641]
CLIC3 OT5KUZ3A Strong Biomarker [642]
CMTM8 OTG28GH2 Strong Biomarker [643]
COL10A1 OTC4G2YC Strong Biomarker [644]
COL5A2 OT5VOSQE Strong Biomarker [645]
COP1 OT6J2K12 Strong Altered Expression [646]
COX2 OTTMVBJJ Strong Altered Expression [329]
COX7B OT67PIDP Strong Altered Expression [647]
CREB3L1 OT2JHIHM Strong Biomarker [648]
CRISP2 OT8HLTV5 Strong Altered Expression [577]
CRKL OTOYSD1R Strong Biomarker [649]
CTNNA2 OTJ8G92T Strong Genetic Variation [650]
CTTN OTJRG4ES Strong Biomarker [200]
CUL4B OT2QX4DO Strong Altered Expression [651]
CWC27 OTB0HBP1 Strong Biomarker [652]
CXADR OT9ZP02A Strong Biomarker [140]
CXCL5 OTZOUPCA Strong Altered Expression [653]
CYTB OTAHB98A Strong Genetic Variation [654]
DAB2 OTRMQTMZ Strong Altered Expression [655]
DAP OT5YLL7E Strong Genetic Variation [656]
DAPK1 OTNCNUCO Strong Biomarker [657]
DBN1 OTZVKG8A Strong Altered Expression [658]
DCDC2 OTSUFH1H Strong Biomarker [659]
DCTN6 OTI8PIN9 Strong Altered Expression [660]
DCX OTISR7K3 Strong Biomarker [661]
DDX20 OT6G8YF3 Strong Genetic Variation [662]
DDX39A OT0Z6E1K Strong Biomarker [663]
DEDD OTIL349E Strong Biomarker [664]
DERL1 OTJUS74N Strong Altered Expression [665]
DLG5 OTU9Z17K Strong Altered Expression [666]
DLGAP5 OTWCN39U Strong Biomarker [667]
DMBT1 OTVNU9D9 Strong Altered Expression [668]
DMRTA1 OTRZY9E9 Strong Altered Expression [669]
DMTF1 OTDKO9OO Strong Biomarker [670]
DNA2 OT4DJFFU Strong Altered Expression [671]
DOC2A OT5G9V94 Strong Altered Expression [655]
DROSHA OTCE68KZ Strong Genetic Variation [672]
DUOX2 OTU14HCN Strong Biomarker [673]
E2F4 OTB3JFH4 Strong Biomarker [674]
ECHDC1 OTMS00PY Strong Biomarker [675]
EDIL3 OTDVVNS0 Strong Altered Expression [676]
EEF1E1 OTRA6XOB Strong Altered Expression [677]
EFEMP1 OTZVUOOB Strong Altered Expression [678]
EFNA1 OTU2NUA2 Strong Biomarker [679]
EFNB2 OT0DCUOM Strong Biomarker [680]
EIF3B OTF67VPH Strong Altered Expression [681]
EIF3D OTDOMP80 Strong Biomarker [310]
EIF3E OTI0WG98 Strong Altered Expression [682]
EIF4G2 OTEO98CR Strong Genetic Variation [358]
ELK1 OTH9MXD6 Strong Altered Expression [683]
EN2 OT7EZCM2 Strong Biomarker [684]
ENO2 OTRODL0T Strong Biomarker [685]
ERCC2 OT1C8HQ4 Strong Biomarker [686]
ESCO1 OTZ9P12A Strong Biomarker [687]
ETFA OTXX61VZ Strong Biomarker [688]
ETV4 OT8C98UZ Strong Altered Expression [689]
EXO1 OTI87RS5 Strong Biomarker [690]
FAM107A OTBG61YZ Strong Biomarker [691]
FANCD2 OTVEB5LF Strong Biomarker [692]
FBLN1 OT5MHHOP Strong Altered Expression [693]
FBLN5 OTLVNZ8U Strong Biomarker [694]
FBXW4 OTEGSZOX Strong Biomarker [579]
FBXW8 OTJG15EO Strong Biomarker [107]
FERMT1 OT626PBA Strong Altered Expression [695]
FERMT2 OTZNPWWX Strong Altered Expression [696]
FEZ1 OTWCXPRE Strong Biomarker [697]
FEZF2 OTU4TXIW Strong Biomarker [698]
FGF13 OTHNNVSG Strong Biomarker [699]
FGF3 OT9PK2SI Strong Biomarker [700]
FGFRL1 OT8HZ3ZL Strong Altered Expression [701]
FLII OT7G9JG6 Strong Altered Expression [689]
FOXA1 OTEBY0TD Strong Posttranslational Modification [702]
FOXA2 OTJOCVOY Strong Biomarker [703]
FOXG1 OTAW57J4 Strong Biomarker [704]
FOXJ1 OT7LLBZ7 Strong Biomarker [705]
FOXO3 OTHXQG4P Strong Biomarker [414]
FOXO4 OT90X9LN Strong Altered Expression [706]
FSD1 OT8P6PT3 Strong Altered Expression [707]
FSD1L OTBQ48RF Strong Altered Expression [707]
FSIP1 OTYLL6GM Strong Altered Expression [708]
FZD4 OTGLZIE0 Strong Biomarker [709]
GADD45A OTDRV63V Strong Altered Expression [710]
GADD45G OT8V1J4M Strong Altered Expression [689]
GAS1 OTKJXG52 Strong Genetic Variation [711]
GDE1 OTU6FSBF Strong Altered Expression [712]
GDF9 OTNTVKVU Strong Altered Expression [713]
GEMIN2 OT4L6TLL Strong Biomarker [714]
GEMIN4 OTX7402E Strong Genetic Variation [662]
GLS2 OT08MSHL Strong Biomarker [715]
GNB4 OTC1GPHA Strong Genetic Variation [716]
GNL3 OTILGYO4 Strong Biomarker [717]
GOLM1 OTOZSV6O Strong Biomarker [718]
GOLPH3 OTDLGYM3 Strong Biomarker [408]
GORASP1 OTQS91S7 Strong Biomarker [719]
GPAA1 OTWVRR35 Strong Biomarker [720]
GPRC5A OTPOCWR7 Strong Biomarker [721]
GREB1 OTU6ZA26 Strong Altered Expression [722]
GSTK1 OTDNGWAF Strong Biomarker [432]
GSTM2 OTG4WT05 Strong Genetic Variation [491]
GSTM3 OTLA2WJT Strong Genetic Variation [723]
H1-0 OTRLJK4Z Strong Posttranslational Modification [724]
HAS1 OTJIAG1W Strong Altered Expression [725]
HAS2 OTTD3PAL Strong Biomarker [584]
HIC2 OT3VP1D9 Strong Biomarker [726]
HJURP OTWMV16B Strong Biomarker [727]
HLA-DOA OTZE5Q7R Strong Genetic Variation [728]
HLA-DRB4 OTNXIHQU Strong Biomarker [729]
HLA-F OT76CM19 Strong Biomarker [730]
HMGB3 OTCJ2EZY Strong Biomarker [731]
HMMR OT4M0JTZ Strong Biomarker [732]
HNF4G OTTSIHJP Strong Altered Expression [733]
HNRNPD OT5UO1FA Strong Biomarker [734]
HNRNPDL OTB3BFCV Strong Altered Expression [418]
HNRNPF OTSMBXMF Strong Biomarker [735]
HNRNPK OTNPRM8U Strong Biomarker [736]
HNRNPL OT0DJX74 Strong Altered Expression [737]
HOXA1 OTMSOJ7D Strong Altered Expression [738]
HOXA9 OTKNK5H0 Strong Posttranslational Modification [739]
HOXB5 OTU74TB8 Strong Biomarker [740]
HOXC9 OT60K4M0 Strong Biomarker [741]
HOXD10 OT0NOWU2 Strong Biomarker [742]
HSPA1A OTKGIE76 Strong Biomarker [743]
HSPA2 OTSDET7B Strong Biomarker [744]
HSPA4 OT5HR0AR Strong Biomarker [418]
HSPB2 OTS01646 Strong Altered Expression [224]
HYAL1 OT2SJN0X Strong Biomarker [590]
IBSP OT29944Y Strong Biomarker [745]
ID4 OTPMJ39I Strong Altered Expression [746]
IER3 OTZJI5FZ Strong Altered Expression [747]
IFI27 OTI2XGIT Strong Altered Expression [660]
IFNE OTXO5MHZ Strong Altered Expression [669]
IGF2BP1 OT9G360P Strong Altered Expression [232]
IGSF21 OTUFCXBS Strong Biomarker [107]
IL10RA OTOX3D1D Strong Biomarker [748]
IL17B OTS86H50 Strong Biomarker [236]
IL18R1 OT83XMPQ Strong Biomarker [182]
IL6ST OT1N9C70 Strong Altered Expression [749]
ILF3 OTKMZ5K5 Strong Biomarker [750]
ING1 OTEZBRKW Strong Biomarker [751]
ING2 OT6H0EWF Strong Genetic Variation [752]
ING4 OT0VVG4V Strong Altered Expression [753]
ING5 OTRNNSFM Strong Altered Expression [754]
INPP4B OTLROA7G Strong Biomarker [755]
INPP5K OTQFLQKA Strong Altered Expression [756]
IQGAP1 OTZRWTGA Strong Altered Expression [757]
IQGAP3 OT4RZV2M Strong Biomarker [691]
ITGA3 OTBCH21D Strong Biomarker [758]
ITIH5 OTP46PZM Strong Posttranslational Modification [759]
JARID2 OT14UM8H Strong Altered Expression [760]
JRK OTO8E77P Strong Genetic Variation [761]
KAT7 OTUN98IC Strong Biomarker [762]
KDM2B OTDMCVW7 Strong Biomarker [699]
KDM6A OTZM3MJJ Strong Altered Expression [763]
KIDINS220 OTLBH2MA Strong Genetic Variation [764]
KIF20A OTXOQHE0 Strong Biomarker [765]
KIF22 OTY6X6BL Strong Biomarker [766]
KLF5 OT1ABI9N Strong Altered Expression [767]
KLF8 OTUC5CDB Strong Biomarker [768]
KLHL1 OTAX6SAD Strong Biomarker [769]
KLK13 OT8LOD2U Strong Biomarker [770]
KMT2B OTMMAZQX Strong Biomarker [771]
KPNA2 OTU7FOE6 Strong Biomarker [772]
KRIT1 OT58AP1I Strong Biomarker [615]
KRT14 OTUVZ1DW Strong Altered Expression [773]
KRT20 OT4RB40L Strong Biomarker [774]
KRT5 OTVGI9HT Strong Altered Expression [775]
KRT7 OTLT3JFN Strong Altered Expression [776]
KRT9 OTA10UCH Strong Biomarker [777]
LAMA2 OTFROQWE Strong Biomarker [107]
LAMTOR2 OTHEDISB Strong Posttranslational Modification [628]
LAPTM5 OT2XI2JG Strong Altered Expression [778]
LCN1 OT8BWXTV Strong Biomarker [779]
LCP2 OT57KE22 Strong Altered Expression [780]
LDHB OT9B1CT3 Strong Biomarker [425]
LETM1 OT8N4MRU Strong Altered Expression [781]
LGALS4 OTKQCG0H Strong Altered Expression [782]
LGALS7 OTMSVI7R Strong Altered Expression [783]
LIG1 OTEEQS43 Strong Genetic Variation [784]
LIG3 OT48SKET Strong Genetic Variation [784]
LIN28B OTVWP0FN Strong Biomarker [785]
LIN9 OTLHW00C Strong Altered Expression [335]
LMX1A OTEEYD5L Strong Posttranslational Modification [786]
LOXL1 OTA0NEJU Strong Biomarker [787]
LOXL4 OT6XY2JL Strong Biomarker [788]
LPXN OTUNV3CK Strong Altered Expression [789]
LRPPRC OTXSK5LP Strong Altered Expression [749]
LUM OTSRC874 Strong Biomarker [790]
MACROH2A1 OTV2DQDD Strong Biomarker [785]
MAD2L1 OTXNGZCG Strong Biomarker [791]
MAGT1 OTQSAV5C Strong Genetic Variation [104]
MAN1B1 OTI780UB Strong Altered Expression [792]
MAP6 OTPUI00F Strong Biomarker [793]
MAPK15 OT8SW0L7 Strong Biomarker [107]
MARCHF8 OTH7PNN2 Strong Biomarker [709]
MBD2 OTUQPP0R Strong Biomarker [794]
MBD4 OTWR9YXE Strong Biomarker [795]
MCAT OTH07FIW Strong Biomarker [153]
MCPH1 OTYT3TT5 Strong Biomarker [796]
MCTS1 OT7SAOJP Strong Biomarker [153]
MDC1 OTEUQH4J Strong Altered Expression [797]
MED15 OT0D0JVD Strong Biomarker [798]
MED19 OTT9RT5N Strong Biomarker [799]
MED30 OTM3INJN Strong Biomarker [800]
METTL3 OTSXP1M3 Strong Biomarker [474]
MLH3 OT91PPBI Strong Biomarker [795]
MLLT11 OTG5RVHC Strong Biomarker [801]
MLXIP OT30UNI7 Strong Biomarker [709]
MMP23B OT2OR6TS Strong Altered Expression [802]
MMRN1 OT7ZNYHT Strong Altered Expression [803]
MNX1 OTXP9FH1 Strong Altered Expression [804]
MRPL28 OT4LUTZU Strong Biomarker [805]
MRPL41 OTG5URO4 Strong Genetic Variation [806]
MSH3 OTD3YPVL Strong Biomarker [273]
MT1X OT9AKFVS Strong Altered Expression [287]
MTA2 OTCCYIQJ Strong Biomarker [807]
MTSS1 OT5DTDO2 Strong Biomarker [808]
MTUS1 OTBPALMU Strong Altered Expression [809]
MUC5B OTPW6K5C Strong Genetic Variation [810]
MUC7 OTSTMP0X Strong Altered Expression [811]
MXD1 OTS5CTHX Strong Biomarker [261]
MXI1 OTUQ9E0D Strong Biomarker [791]
MYLIP OTL0PFGV Strong Biomarker [709]
MYNN OT61R1HP Strong Genetic Variation [812]
NAIP OTLA925F Strong Biomarker [813]
NANOG OTUEY1FM Strong Altered Expression [814]
NBN OT73B5MD Strong Genetic Variation [815]
NCAN OT8OO6ZE Strong Biomarker [107]
NDRG2 OT5L6KD7 Strong Altered Expression [291]
NEBL OT2WH1NC Strong Biomarker [816]
NKX6-2 OT7FI94W Strong Biomarker [618]
NLRP2 OTJA81JU Strong Genetic Variation [815]
NLRP4 OT864X7M Strong Altered Expression [459]
NME2 OTCYGLHV Strong Biomarker [817]
NMU OTW9X7BQ Strong Altered Expression [818]
NOX1 OTZPJQCC Strong Biomarker [819]
NRSN1 OT1KKXC8 Strong Biomarker [107]
NTNG2 OTTY88DL Strong Biomarker [820]
NUCB2 OTHO6JWN Strong Biomarker [821]
NUDT6 OTCS3NYZ Strong Biomarker [822]
NUMA1 OTTKAVG4 Strong Biomarker [823]
NUPR1 OT4FU8C0 Strong Altered Expression [824]
NXT1 OT0VO6AY Strong Biomarker [805]
OBP2A OTBIJ5TI Strong Biomarker [766]
OIP5 OTI5C2DE Strong Altered Expression [690]
OPCML OT93PQ6Y Strong Altered Expression [825]
OPN1LW OTFNUZ7O Strong Biomarker [157]
OTX1 OTRGSGH9 Strong Biomarker [826]
P3H4 OTZPXYSH Strong Altered Expression [827]
PA2G4 OT7IG7HT Strong Altered Expression [828]
PAG1 OTFOJUIQ Strong Biomarker [157]
PAK5 OT32WQGL Strong Altered Expression [829]
PAN2 OTB65N2I Strong Altered Expression [459]
PAX8 OTRPD9MI Strong Biomarker [431]
PBOV1 OT67PERT Strong Altered Expression [830]
PCBP4 OTDLL4NB Strong Biomarker [157]
PCDH10 OT2GIT0E Strong Biomarker [831]
PCDH17 OTRK0M05 Strong Altered Expression [832]
PCDH7 OTP091X8 Strong Altered Expression [833]
PCDH8 OTDDOQM2 Strong Biomarker [834]
PDC OT1UUVYY Strong Biomarker [335]
PDCD10 OTCHJTSF Strong Altered Expression [835]
PDCD6 OT2YA5M8 Strong Genetic Variation [836]
PDIA6 OT8YBR17 Strong Biomarker [837]
PDK4 OTCMHMBZ Strong Biomarker [838]
PDLIM2 OTEURRPD Strong Posttranslational Modification [839]
PDRG1 OT8ZMFZE Strong Biomarker [840]
PENK OT8P3HMP Strong Biomarker [618]
PFKFB4 OTQYEXL2 Strong Genetic Variation [841]
PFN1 OTHTGA1H Strong Altered Expression [842]
PGAM1 OTZ5DB06 Strong Biomarker [843]
PGM5 OTEAS7OC Strong Biomarker [844]
PHLPP2 OTXB1OUI Strong Biomarker [845]
PI15 OTPJL6ML Strong Biomarker [650]
PIEZO1 OTBG1FU4 Strong Altered Expression [846]
PIEZO2 OTQ7AT38 Strong Altered Expression [846]
PIK3C3 OTLUM9L7 Strong Biomarker [847]
PIK3R1 OT5BZ1J9 Strong Biomarker [512]
PITX2 OTWMXAOY Strong Genetic Variation [848]
PIWIL2 OT1PXQIF Strong Biomarker [849]
PKP2 OTJOVF68 Strong Altered Expression [850]
PKP3 OTPL1HRB Strong Altered Expression [850]
PLCE1 OTJISZOX Strong Altered Expression [851]
PLEKHF1 OT9OL16U Strong Biomarker [852]
PLEKHM2 OT4ZYV73 Strong Altered Expression [756]
PLIN2 OTRXJ9UN Strong Biomarker [853]
PLXNA1 OTN0BING Strong Altered Expression [622]
PMF1 OT8PQPZ1 Strong Posttranslational Modification [854]
POLD1 OTWO4UCJ Strong Genetic Variation [784]
POLI OTBA4DCE Strong Biomarker [855]
POU4F2 OT6SW5H0 Strong Biomarker [856]
POU5F1 OTDHHN7O Strong Altered Expression [857]
PPIG OTZ8BTTM Strong Genetic Variation [858]
PPM1B OTZMH6V3 Strong Biomarker [859]
PPP2CB OT24GMCM Strong Biomarker [860]
PPP3CC OT0AQD93 Strong Genetic Variation [861]
PRDM2 OT8L7CGX Strong Biomarker [107]
PRIMA1 OT9ITT3P Strong Biomarker [862]
PRKAA1 OT7TNF0L Strong Altered Expression [863]
PRKAA2 OTU1KZPV Strong Altered Expression [863]
PRKAB1 OT1OG4QZ Strong Altered Expression [863]
PRKACG OTKOQYF8 Strong Biomarker [265]
PRPF31 OTSJ0Z1Y Strong Biomarker [864]
PRRC2C OTBX3MXM Strong Altered Expression [865]
PRSS3 OTN3S5YB Strong Biomarker [866]
PRSS55 OTXXWI5Y Strong Altered Expression [577]
PSG2 OT2EIXAI Strong Altered Expression [148]
PSMB2 OTX0UG5W Strong Biomarker [107]
PSMD1 OTW258OV Strong Biomarker [867]
PSMD12 OTWICA51 Strong Biomarker [310]
PSMD9 OT6Y5CC3 Strong Altered Expression [660]
PYCARD OT67RON3 Strong Biomarker [368]
RAB11A OTC4FW0J Strong Altered Expression [868]
RAB25 OTW0W6NP Strong Altered Expression [869]
RAB27A OT9SQRWY Strong Biomarker [870]
RAB27B OTPF9D0K Strong Altered Expression [871]
RAB36 OTL30F2P Strong Biomarker [872]
RAB40B OTCA9ZF5 Strong Posttranslational Modification [873]
RALGAPA2 OTFFGNPT Strong Biomarker [333]
RALGPS1 OTEQN0MA Strong Biomarker [107]
RALGPS2 OTOYS0SD Strong Biomarker [874]
RAP2B OTD2NDQP Strong Biomarker [875]
RARRES1 OTETUPP5 Strong Biomarker [876]
RASAL2 OTGMMX6W Strong Biomarker [877]
RASSF7 OT0V4EIZ Strong Genetic Variation [878]
RB1 OT9VMY7B Strong Biomarker [879]
RBBP8 OTRHJ3GI Strong Altered Expression [824]
RBP1 OTRP1MFC Strong Posttranslational Modification [880]
RBX1 OTYA1UIO Strong Biomarker [881]
RFC1 OT3L5PK3 Strong Altered Expression [356]
RING1 OTCWTAX0 Strong Biomarker [882]
RIT1 OTVNOGOH Strong Biomarker [881]
RMC1 OT7K8MTJ Strong Altered Expression [883]
RNF8 OTRR43PZ Strong Biomarker [884]
RPL10 OTBHOZGC Strong Altered Expression [622]
RPP14 OT4OYFSK Strong Posttranslational Modification [628]
RSPH9 OTRAK1LK Strong Posttranslational Modification [885]
RTKN2 OTV2AXQM Strong Biomarker [886]
RTRAF OTJ6NVMW Strong Biomarker [887]
RUVBL1 OTWV19L7 Strong Biomarker [888]
S100A16 OT3ERKQI Strong Biomarker [889]
S100A7 OTJFVJRF Strong Altered Expression [890]
SARDH OTQ49Q27 Strong Genetic Variation [363]
SART1 OTHMOGO1 Strong Biomarker [891]
SCAF11 OTX59D0X Strong Biomarker [714]
SCO2 OTJQQDRS Strong Biomarker [53]
SDHB OTRE1M1T Strong Genetic Variation [363]
SDS OT5WTJ2M Strong Genetic Variation [363]
SELENOF OT2JFB3S Strong Genetic Variation [892]
SEMA6A OTDQ7QAW Strong Biomarker [893]
SENP2 OTPQJXIR Strong Altered Expression [894]
SETD6 OTH5APN1 Strong Biomarker [895]
SF3B6 OTPRKS6S Strong Posttranslational Modification [628]
SFN OTLJCZ1U Strong Biomarker [896]
SFRP1 OT0U9G41 Strong Altered Expression [897]
SGK2 OTCTVSHF Strong Biomarker [898]
SH3BGRL3 OTKMW34I Strong Altered Expression [899]
SH3BP2 OT90JNBS Strong Biomarker [900]
SHMT1 OTIINA3J Strong Genetic Variation [160]
SIRT7 OT5M4OT4 Strong Biomarker [901]
SKA1 OTDYJ12A Strong Altered Expression [902]
SLC12A9 OTR7VRAK Strong Biomarker [903]
SLC26A8 OTNCW8RJ Strong Altered Expression [423]
SLURP1 OT89YD2E Strong Biomarker [904]
SNAI1 OTDPYAMC Strong Altered Expression [36]
SNRNP70 OTP52YZ3 Strong Genetic Variation [905]
SNW1 OTKWG3PS Strong Biomarker [756]
SOCS6 OT2O5ZBK Strong Biomarker [906]
SORL1 OTQ8FFNS Strong Altered Expression [907]
SOX1 OTVI1RAR Strong Posttranslational Modification [848]
SOX11 OT4LG7LA Strong Biomarker [908]
SOX30 OTGT38E3 Strong Altered Expression [909]
SOX4 OTSS40SS Strong Biomarker [910]
SPAG9 OT45AHMB Strong Altered Expression [911]
SPAM1 OTMPOB4E Strong Biomarker [590]
SPG7 OT8OY9ST Strong Biomarker [140]
SPHKAP OT5RHUYJ Strong Altered Expression [756]
SPINK1 OTSUVAL2 Strong Altered Expression [912]
SPOCD1 OTF4K46N Strong Biomarker [913]
SPZ1 OTQH8HJ5 Strong Altered Expression [577]
SRA1 OTYOGMTG Strong Biomarker [914]
SRI OT4R3EAC Strong Genetic Variation [915]
SRSF9 OT2STDP4 Strong Altered Expression [916]
ST3GAL1 OTFCO8QX Strong Genetic Variation [917]
ST6GAL1 OT7US3NO Strong Altered Expression [918]
ST6GALNAC1 OT3JQD99 Strong Altered Expression [919]
STAG1 OT564IX4 Strong Altered Expression [920]
STAG2 OTR6X1Q7 Strong Biomarker [921]
STRN OTLOZL5I Strong Biomarker [922]
STRN3 OT44KXPY Strong Biomarker [922]
SYCE1L OTXU44F3 Strong Biomarker [769]
SYT1 OTVTPOI6 Strong Biomarker [719]
TBC1D9 OTSSCTB5 Strong Altered Expression [923]
TBL2 OTCIMSK8 Strong Biomarker [924]
TBPL1 OT4I143E Strong Biomarker [374]
TBX2 OTTOT7A9 Strong Posttranslational Modification [925]
TBX3 OTM64N7K Strong Posttranslational Modification [925]
TCF21 OT393IMA Strong Posttranslational Modification [926]
TCIM OTARUXQF Strong Biomarker [927]
TEAD1 OTK6971C Strong Biomarker [928]
TEX19 OTY6MIZ9 Strong Altered Expression [929]
TFDP1 OT6RZ7VT Strong Biomarker [930]
TFPI2 OTZCRWOR Strong Biomarker [928]
TGFBR3 OTQOOUC4 Strong Biomarker [376]
TICAM2 OTK7GIJ5 Strong Altered Expression [660]
TIMP2 OT8S1RRP Strong Biomarker [931]
TIMP3 OTDGQAD1 Strong Genetic Variation [277]
TJP1 OTBDCUPK Strong Biomarker [932]
TLK1 OTICTXI8 Strong Biomarker [265]
TLNRD1 OTNOLROI Strong Altered Expression [933]
TLR10 OTQ1KVJO Strong Genetic Variation [934]
TLX3 OTBUHHK3 Strong Biomarker [935]
TM4SF1 OTY0ECQN Strong Biomarker [936]
TMED7 OTONO8E6 Strong Altered Expression [660]
TMEFF2 OT1WZ2QO Strong Biomarker [937]
TMEM129 OTJU5VDZ Strong Genetic Variation [938]
TMEM40 OTSJKKNA Strong Biomarker [939]
TMX1 OTX4FHYQ Strong Biomarker [940]
TNFRSF10C OTVHOL9B Strong Posttranslational Modification [941]
TOP3A OT3CKUI9 Strong Biomarker [942]
TP53I3 OTSCM68G Strong Genetic Variation [806]
TP53INP2 OT0GTBXO Strong Biomarker [943]
TP63 OT0WOOKQ Strong Altered Expression [944]
TP73 OT0LUO47 Strong Altered Expression [595]
TPPP OTCFMSUF Strong Biomarker [945]
TRIM13 OTQIUACB Strong Biomarker [140]
TRIM29 OT2DNESG Strong Altered Expression [944]
TRIO OT71X1AK Strong Altered Expression [946]
TRIP13 OTFM3TI9 Strong Biomarker [52]
TSGA10 OTIF1O1T Strong Biomarker [947]
BRINP1 OTEUVSCP Definitive Biomarker [618]
CD82 OTH8MC64 Definitive Altered Expression [948]
CKAP4 OTDUC9ME Definitive Biomarker [418]
CTCF OT8ZB70U Definitive Posttranslational Modification [949]
DAB2IP OTF456VC Definitive Altered Expression [655]
ELAVL2 OT6EJ8MQ Definitive Biomarker [52]
ERCC1 OTNPYQHI Definitive Biomarker [344]
HERPUD1 OT9EROL6 Definitive Biomarker [419]
HPR OTXSC9UB Definitive Biomarker [950]
IFNL2 OT4BMJF7 Definitive Biomarker [236]
LARP6 OTUQ9QS9 Definitive Biomarker [951]
LYPD4 OTYNO8BS Definitive Biomarker [952]
LZTS1 OTXXL864 Definitive Biomarker [953]
MCM5 OTAHLB62 Definitive Biomarker [954]
MT1E OTXJKU4Y Definitive Biomarker [955]
NID2 OTHC33FF Definitive Posttranslational Modification [956]
RAD23B OT0PGOG3 Definitive Genetic Variation [624]
SFXN1 OTL66767 Definitive Biomarker [957]
SUB1 OTK71JYU Definitive Posttranslational Modification [628]
TBP OT6C0S52 Definitive Biomarker [958]
------------------------------------------------------------------------------------
⏷ Show the Full List of 685 DOT(s)

References

1 Mitomycin FDA Label
2 Thiotepa FDA Label
3 Valrubicin FDA Label
4 Prospective Validation of an mRNA-based Urine Test for Surveillance of Patients with Bladder Cancer.Eur Urol. 2019 May;75(5):853-860. doi: 10.1016/j.eururo.2018.11.055. Epub 2018 Dec 12.
5 Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis.Cancer Med. 2019 Jun;8(6):2717-2729. doi: 10.1002/cam4.2152. Epub 2019 Apr 5.
6 CCL18 enhances migration, invasion and EMT by binding CCR8 in bladder cancer cells.Mol Med Rep. 2019 Mar;19(3):1678-1686. doi: 10.3892/mmr.2018.9791. Epub 2018 Dec 24.
7 CDK4/6 Inhibitor as a Novel Therapeutic Approach for Advanced Bladder Cancer Independently of RB1 Status.Clin Cancer Res. 2019 Jan 1;25(1):390-402. doi: 10.1158/1078-0432.CCR-18-0685. Epub 2018 Sep 21.
8 Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion.J Exp Med. 2019 Nov 4;216(11):2635-2652. doi: 10.1084/jem.20190251. Epub 2019 Sep 10.
9 High-soluble CGA levels are associated with poor survival in bladder cancer.Endocr Connect. 2019 May 1;8(5):625-633. doi: 10.1530/EC-19-0068.
10 Multiple recurrences and risk of disease progression in patients with primary low-grade (TaG1) non-muscle-invasive bladder cancer and with low and intermediate EORTC-risk score.PLoS One. 2019 Feb 27;14(2):e0211721. doi: 10.1371/journal.pone.0211721. eCollection 2019.
11 Caspase recruitment domain family member 10 regulates carbamoyl phosphate synthase 1 and promotes cancer growth in bladder cancer cells.J Cell Mol Med. 2019 Dec;23(12):8128-8138. doi: 10.1111/jcmm.14683. Epub 2019 Sep 29.
12 Multi-omics Integration Analysis Robustly Predicts High-Grade Patient Survival and Identifies CPT1B Effect on Fatty Acid Metabolism in Bladder Cancer.Clin Cancer Res. 2019 Jun 15;25(12):3689-3701. doi: 10.1158/1078-0432.CCR-18-1515. Epub 2019 Mar 7.
13 Pesticides, gene polymorphisms, and bladder cancer among Egyptian agricultural workers.Arch Environ Occup Health. 2015;70(1):19-26. doi: 10.1080/19338244.2013.853646.
14 Soluble HER3 predicts survival in bladder cancer patients.Oncol Lett. 2018 Feb;15(2):1783-1788. doi: 10.3892/ol.2017.7470. Epub 2017 Nov 22.
15 Polymorphisms of N-acetyltransferase 2, glutathione S-transferase mu and theta genes as risk factors of bladder cancer in relation to asthma and tuberculosis.J Urol. 2000 Jul;164(1):209-13.
16 Genoproteomic mining of urothelial cancer suggests {gamma}-glutamyl hydrolase and diazepam-binding inhibitor as putative urinary markers of outcome after chemotherapy.Am J Pathol. 2009 Nov;175(5):1824-30. doi: 10.2353/ajpath.2009.090155. Epub 2009 Oct 8.
17 Activation of type 4 metabotropic glutamate receptor promotes cell apoptosis and inhibits proliferation in bladder cancer.J Cell Physiol. 2019 Mar;234(3):2741-2755. doi: 10.1002/jcp.27089. Epub 2018 Aug 26.
18 Does phosphorylation of cofilin affect the progression of human bladder cancer?.BMC Cancer. 2013 Feb 1;13:45. doi: 10.1186/1471-2407-13-45.
19 GSTO1*C/GSTO2*G haplotype is associated with risk of transitional cell carcinoma of urinary bladder.Int Urol Nephrol. 2015 Apr;47(4):625-30. doi: 10.1007/s11255-015-0933-0. Epub 2015 Feb 26.
20 Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer.FEBS Open Bio. 2019 Feb 21;9(4):693-706. doi: 10.1002/2211-5463.12600. eCollection 2019 Apr.
21 Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer.J Clin Invest. 2020 Jan 2;130(1):404-421. doi: 10.1172/JCI130892.
22 HtrA1 in human urothelial bladder cancer: a secreted protein and a potential novel biomarker.Int J Cancer. 2013 Dec 1;133(11):2650-61. doi: 10.1002/ijc.28280. Epub 2013 Jul 9.
23 Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers.Carcinogenesis. 2014 Dec;35(12):2698-705. doi: 10.1093/carcin/bgu203. Epub 2014 Sep 19.
24 Urinary bladder cancer risk in relation to a single nucleotide polymorphism (rs2854744) in the insulin-like growth factor-binding protein-3 (IGFBP3) gene.Arch Toxicol. 2012 Feb;86(2):195-203. doi: 10.1007/s00204-011-0747-5. Epub 2011 Sep 3.
25 Immune analysis of expression of IL-17 relative ligands and their receptors in bladder cancer: comparison with polyp and cystitis.BMC Immunol. 2016 Oct 3;17(1):36. doi: 10.1186/s12865-016-0174-8.
26 Stage-associated overexpression of the ubiquitin-like protein, ISG15, in bladder cancer.Br J Cancer. 2006 May 22;94(10):1465-71. doi: 10.1038/sj.bjc.6603099.
27 N(6)-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer.EBioMedicine. 2019 Sep;47:195-207. doi: 10.1016/j.ebiom.2019.07.068. Epub 2019 Aug 10.
28 Large-scale profiling of serum metabolites in African American and European American patients with bladder cancer reveals metabolic pathways associated with patient survival.Cancer. 2019 Mar 15;125(6):921-932. doi: 10.1002/cncr.31890. Epub 2019 Jan 2.
29 Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer.Biomed Pharmacother. 2019 Dec;120:109490. doi: 10.1016/j.biopha.2019.109490. Epub 2019 Sep 28.
30 LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk.Int J Cancer. 2019 Mar 15;144(6):1345-1355. doi: 10.1002/ijc.31757. Epub 2018 Nov 4.
31 Lymphotoxin receptor activation promotes bladder cancer in a nuclear factor-B-dependent manner.Mol Med Rep. 2015 Feb;11(2):783-90. doi: 10.3892/mmr.2014.2826. Epub 2014 Oct 30.
32 Inhibition of MELK produces potential anti-tumour effects in bladder cancer by inducing G1/S cell cycle arrest via the ATM/CHK2/p53 pathway.J Cell Mol Med. 2020 Jan;24(2):1804-1821. doi: 10.1111/jcmm.14878. Epub 2019 Dec 10.
33 TYRO3 as a molecular target for growth inhibition and apoptosis induction in bladder cancer.Br J Cancer. 2019 Mar;120(5):555-564. doi: 10.1038/s41416-019-0397-6. Epub 2019 Feb 15.
34 Neural precursor cell expressed, developmentally downregulated 8 promotes tumor progression and predicts poor prognosis of patients with bladder cancer.Cancer Sci. 2019 Jan;110(1):458-467. doi: 10.1111/cas.13865. Epub 2018 Dec 10.
35 Long non-coding RNA ARAP1-AS1 promotes the progression of bladder cancer by regulating miR-4735-3p/NOTCH2 axis.Cancer Biol Ther. 2019;20(4):552-561. doi: 10.1080/15384047.2018.1538613. Epub 2018 Nov 7.
36 Upregulation of lncRNA snoRNA host gene 6 regulates NUAK family SnF1-like kinase-1 expression by competitively binding microRNA-125b and interacting with Snail1/2 in bladder cancer.J Cell Biochem. 2019 Jan;120(1):357-367. doi: 10.1002/jcb.27387. Epub 2018 Aug 30.
37 MiR-34b-3p Represses the Multidrug-Chemoresistance of Bladder Cancer Cells by Regulating the CCND2 and P2RY1 Genes.Med Sci Monit. 2019 Feb 19;25:1323-1335. doi: 10.12659/MSM.913746.
38 Canine urothelial carcinoma: genomically aberrant and comparatively relevant.Chromosome Res. 2015 Jun;23(2):311-31. doi: 10.1007/s10577-015-9471-y. Epub 2015 Mar 18.
39 Prohibitin gene is overexpressed but not mutated in rat bladder carcinomas and cell lines.Cancer Lett. 1994 Aug 15;83(1-2):201-7. doi: 10.1016/0304-3835(94)90320-4.
40 PPAR activation serves as therapeutic strategy against bladder cancer via inhibiting PI3K-Akt signaling pathway.BMC Cancer. 2019 Mar 7;19(1):204. doi: 10.1186/s12885-019-5426-6.
41 Protein kinase D inhibitor CRT0066101 suppresses bladder cancer growth in vitro and xenografts via blockade of the cell cycle at G2/M.Cell Mol Life Sci. 2018 Mar;75(5):939-963. doi: 10.1007/s00018-017-2681-z. Epub 2017 Oct 25.
42 NFB2 p52 stabilizes rhogdi mRNA by inhibiting AUF1 protein degradation via a miR-145/Sp1/USP8-dependent axis.Mol Carcinog. 2019 May;58(5):777-793. doi: 10.1002/mc.22970. Epub 2019 Jan 29.
43 RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia. 2010 Dec;12(12):1003-12.
44 Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes.Sci Adv. 2019 Sep 25;5(9):eaaw6499. doi: 10.1126/sciadv.aaw6499. eCollection 2019 Sep.
45 RSPO3 promotes the aggressiveness of bladder cancer via Wnt/-catenin and Hedgehog signaling pathways.Carcinogenesis. 2019 Apr 29;40(2):360-369. doi: 10.1093/carcin/bgy140.
46 Sphingosine 1 phosphate receptor-1 (S1P1) promotes tumor-associated regulatory T cell expansion: leading to poor survival in bladder cancer.Cell Death Dis. 2019 Jan 18;10(2):50. doi: 10.1038/s41419-018-1298-y.
47 Semaphorin 4D promotes the proliferation and metastasis of bladder cancer by activating the PI3K/AKT pathway.Tumori. 2019 Jun;105(3):231-242. doi: 10.1177/0300891618811280. Epub 2019 Jan 24.
48 Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection.Biochem Biophys Res Commun. 2011 Oct 22;414(2):344-9. doi: 10.1016/j.bbrc.2011.09.073. Epub 2011 Sep 17.
49 Mitogenic signal transduction caused by monomethylarsonous acid in human bladder cells: role in arsenic-induced carcinogenesis. Toxicol Sci. 2007 Feb;95(2):321-30.
50 TACC3 transcriptionally upregulates E2F1 to promote cell growth and confer sensitivity to cisplatin in bladder cancer.Cell Death Dis. 2018 Jan 22;9(2):72. doi: 10.1038/s41419-017-0112-6.
51 Synthesis, characterization, and biological activity of a triphenylphosphonium-containing imidazolium salt against select bladder cancer cell lines.Eur J Med Chem. 2020 Jan 1;185:111832. doi: 10.1016/j.ejmech.2019.111832. Epub 2019 Oct 31.
52 Four novel biomarkers for bladder cancer identified by weighted gene coexpression network analysis.J Cell Physiol. 2019 Aug;234(10):19073-19087. doi: 10.1002/jcp.28546. Epub 2019 Mar 29.
53 Expression of the fluoropyrimidine-metabolizing enzymes in bladder cancers as measured by the Danenberg tumor profile.Oncol Res. 2009;18(4):153-62. doi: 10.3727/096504009790217371.
54 Therapeutic enhancement of S-1 with CPT-11 through down-regulation of thymidylate synthase in bladder cancer.Cancer Med. 2013 Aug;2(4):488-95. doi: 10.1002/cam4.95. Epub 2013 Jun 10.
55 RNA-Binding Protein ZFP36L1 Suppresses Hypoxia and Cell-Cycle Signaling.Cancer Res. 2020 Jan 15;80(2):219-233. doi: 10.1158/0008-5472.CAN-18-2796. Epub 2019 Sep 24.
56 Mutations in CDKN2A and the FGFR3 genes on bladder cancer diagnosis: a systematic review and meta-analysis.World J Urol. 2019 Oct;37(10):2001-2007. doi: 10.1007/s00345-019-02779-7. Epub 2019 Apr 27.
57 The clinical significance of PINX1 expression in papillary thyroid carcinoma.Hum Pathol. 2018 Nov;81:176-183. doi: 10.1016/j.humpath.2018.07.004. Epub 2018 Jul 17.
58 Differentiation-associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic-metabolizing activity of "luminal" muscle-invasive bladder cancers.Mol Carcinog. 2018 May;57(5):606-618. doi: 10.1002/mc.22784. Epub 2018 Feb 1.
59 ACR Appropriateness Criteria Post-Treatment Surveillance of Bladder Cancer.J Am Coll Radiol. 2019 Nov;16(11S):S417-S427. doi: 10.1016/j.jacr.2019.05.026.
60 Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression.Oncogene. 2020 Oct;39(40):6265-6285. doi: 10.1038/s41388-019-0902-7. Epub 2019 Aug 5.
61 The significance of calprotectin, CD147, APOA4 and DJ-1 in non-invasive detection of urinary bladder carcinoma.Neoplasma. 2019 Nov;66(6):1019-1023. doi: 10.4149/neo_2019_190124N74. Epub 2019 Oct 8.
62 Implication of RAF and RKIP genes in urinary bladder cancer.Pathol Oncol Res. 2011 Jun;17(2):181-90. doi: 10.1007/s12253-010-9295-1. Epub 2010 Sep 18.
63 Expression of bone morphogenetic protein-10 (BMP10) in human urothelial cancer of the bladder and its effects on the aggressiveness of bladder cancer cells in vitro.Anticancer Res. 2013 May;33(5):1917-25.
64 The Immune Checkpoint Molecule CD200 Is Associated with Tumor Grading and Metastasis in Bladder Cancer.Anticancer Res. 2018 May;38(5):2749-2754. doi: 10.21873/anticanres.12517.
65 Dual role of carcinoembryonic antigen-related cell adhesion molecule 1 in angiogenesis and invasion of human urinary bladder cancer.Cancer Res. 2004 Dec 15;64(24):8932-8. doi: 10.1158/0008-5472.CAN-04-0505.
66 Granulocyte colony-stimulating factor receptor signals for beta1-integrin expression and adhesion in bladder cancer.Urology. 2004 Jan;63(1):177-83. doi: 10.1016/s0090-4295(03)00786-6.
67 Collaborative response to arsenic-contaminated soil in an Appalachian Kentucky neighborhood.J Toxicol Environ Health A. 2019;82(12):697-701. doi: 10.1080/15287394.2019.1641872. Epub 2019 Jul 15.
68 Caveolin-1 and dynamin-2 overexpression is associated with the progression of bladder cancer.Oncol Lett. 2019 Jul;18(1):219-226. doi: 10.3892/ol.2019.10310. Epub 2019 May 3.
69 Establishment of a novel experimental model for muscle-invasive bladder cancer using a dog bladder cancer organoid culture.Cancer Sci. 2019 Sep;110(9):2806-2821. doi: 10.1111/cas.14118. Epub 2019 Jul 23.
70 Inhibition of a G9a/DNMT network triggers immune-mediated bladder cancer regression.Nat Med. 2019 Jul;25(7):1073-1081. doi: 10.1038/s41591-019-0499-y. Epub 2019 Jul 3.
71 EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival.Oncogene. 2006 Feb 2;25(5):769-80. doi: 10.1038/sj.onc.1209108.
72 Expression and Functions of Formyl Peptide Receptor 1 in Drug-Resistant Bladder Cancer.Technol Cancer Res Treat. 2018 Jan 1;17:1533034618769413. doi: 10.1177/1533034618769413.
73 BMP9 Promotes the Proliferation and Migration of Bladder Cancer Cells through Up-Regulating lncRNA UCA1.Int J Mol Sci. 2018 Apr 8;19(4):1116. doi: 10.3390/ijms19041116.
74 Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking.J Comput Aided Mol Des. 2019 Sep;33(9):799-815. doi: 10.1007/s10822-019-00226-8. Epub 2019 Oct 19.
75 Downregulation of HDGF inhibits the tumorigenesis of bladder cancer cells by inactivating the PI3K-AKT signaling pathway.Cancer Manag Res. 2019 Aug 22;11:7909-7923. doi: 10.2147/CMAR.S215341. eCollection 2019.
76 Correlation of IL-31 gene polymorphisms with susceptibility and clinical recurrence of bladder cancer.Fam Cancer. 2018 Oct;17(4):577-585. doi: 10.1007/s10689-017-0060-4.
77 IMP3 overexpression occurs in various important cancer types and is linked to aggressive tumor features: A tissue microarray study on 8,877 human cancers and normal tissues.Oncol Rep. 2018 Jan;39(1):3-12. doi: 10.3892/or.2017.6072. Epub 2017 Nov 2.
78 MiR-652-3p promotes bladder cancer migration and invasion by targeting KCNN3.Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8806-8812. doi: 10.26355/eurrev_201910_19275.
79 Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1.Oncogene. 2017 Jul 6;36(27):3868-3877. doi: 10.1038/onc.2017.13. Epub 2017 Mar 6.
80 Upregulation of JMJD2A promotes migration and invasion in bladder cancer through regulation of SLUG.Oncol Rep. 2019 Oct;42(4):1431-1440. doi: 10.3892/or.2019.7246. Epub 2019 Jul 23.
81 KIF5A Promotes Bladder Cancer Proliferation In Vitro and In Vivo.Dis Markers. 2019 Jul 3;2019:4824902. doi: 10.1155/2019/4824902. eCollection 2019.
82 Carcinogenic role of K-Ras-ERK1/2 signaling in bladder cancer via inhibition of H1.2 phosphorylation at T146.J Cell Physiol. 2019 Nov;234(11):21135-21144. doi: 10.1002/jcp.28716. Epub 2019 Apr 29.
83 BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen species-linked pathway.Free Radic Biol Med. 2010 Sep 15;49(6):1072-81. doi: 10.1016/j.freeradbiomed.2010.06.023. Epub 2010 Jun 28.
84 The RNA binding protein Musashi1 regulates apoptosis, gene expression and stress granule formation in urothelial carcinoma cells.J Cell Mol Med. 2011 May;15(5):1210-24. doi: 10.1111/j.1582-4934.2010.01090.x. Epub 2010 May 14.
85 Long noncoding RNA NNT-AS1 enhances the malignant phenotype of bladder cancer by acting as a competing endogenous RNA on microRNA-496 thereby increasing HMGB1 expression.Aging (Albany NY). 2019 Dec 17;11(24):12624-12640. doi: 10.18632/aging.102591. Epub 2019 Dec 17.
86 Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility.Nat Commun. 2019 May 29;10(1):2356. doi: 10.1038/s41467-019-10241-w.
87 Aberrantly expressed PLOD1 promotes cancer aggressiveness in bladder cancer: a potential prognostic marker and therapeutic target.Mol Oncol. 2019 Sep;13(9):1898-1912. doi: 10.1002/1878-0261.12532. Epub 2019 Jun 27.
88 Overexpression of exchange protein directly activated by cAMP-1 (EPAC1) attenuates bladder cancer cell migration.Biochem Biophys Res Commun. 2018 Jan 1;495(1):64-70. doi: 10.1016/j.bbrc.2017.10.142. Epub 2017 Oct 28.
89 Gene promoter methylation and cancer: An umbrella review.Gene. 2019 Aug 20;710:333-340. doi: 10.1016/j.gene.2019.06.023. Epub 2019 Jun 13.
90 Specifically blocking the fatty acid synthesis to inhibit the malignant phenotype of bladder cancer.Int J Biol Sci. 2019 Jun 4;15(8):1610-1617. doi: 10.7150/ijbs.32518. eCollection 2019.
91 SLC14A1: a novel target for human urothelial cancer.Clin Transl Oncol. 2017 Dec;19(12):1438-1446. doi: 10.1007/s12094-017-1693-3. Epub 2017 Jun 6.
92 Validation of survivin and HMGA2 as biomarkers for cisplatin resistance in bladder cancer.Urol Oncol. 2019 Nov;37(11):810.e7-810.e15. doi: 10.1016/j.urolonc.2019.04.015. Epub 2019 Apr 30.
93 USP13 functions as a tumor suppressor by blocking the NF-kB-mediated PTEN downregulation in human bladder cancer.J Exp Clin Cancer Res. 2019 Jun 14;38(1):259. doi: 10.1186/s13046-019-1262-4.
94 Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p.J Biol Chem. 2018 May 4;293(18):6693-6706. doi: 10.1074/jbc.RA118.001689. Epub 2018 Mar 16.
95 Intercellular transfer of P-glycoprotein mediates the formation of stable multi-drug resistance in human bladder cancer BIU-87 cells.Biol Open. 2019 May 1;8(5):bio041889. doi: 10.1242/bio.041889.
96 Long non-coding RNA GHET1 contributes to chemotherapeutic resistance to Gemcitabine in bladder cancer.Cancer Chemother Pharmacol. 2019 Jul;84(1):187-194. doi: 10.1007/s00280-019-03873-8. Epub 2019 May 21.
97 Long noncoding RNA FOXD2-AS1 accelerates the gemcitabine-resistance of bladder cancer by sponging miR-143.Biomed Pharmacother. 2018 Jul;103:415-420. doi: 10.1016/j.biopha.2018.03.138. Epub 2018 Apr 24.
98 Organochlorine and organophosphorus pesticides and bladder cancer: A case-control study.J Cell Biochem. 2019 Sep;120(9):14847-14859. doi: 10.1002/jcb.28746. Epub 2019 Apr 22.
99 Correction to: Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer.Int J Clin Oncol. 2018 Aug;23(4):799. doi: 10.1007/s10147-018-1257-8.
100 Nodal regulates bladder cancer cell migration and invasion via the ALK/Smad signaling pathway.Onco Targets Ther. 2018 Oct 5;11:6589-6597. doi: 10.2147/OTT.S177514. eCollection 2018.
101 Development of an ELISA to detect the secreted prostate cancer biomarker AGR2 in voided urine.Prostate. 2012 Jun 15;72(9):1023-34. doi: 10.1002/pros.21508. Epub 2011 Nov 9.
102 Association of AKR1C3 Polymorphisms with Bladder Cancer.Urol J. 2016 Apr 16;13(2):2615-21.
103 Alternative splicing of ALCAM enables tunable regulation of cell-cell adhesion through differential proteolysis.Sci Rep. 2018 Feb 16;8(1):3208. doi: 10.1038/s41598-018-21467-x.
104 NF-B suppresses apoptosis and promotes bladder cancer cell proliferation by upregulating survivin expression in vitro and in vivo.Sci Rep. 2017 Jan 31;7:40723. doi: 10.1038/srep40723.
105 Expression of alpha-methylacyl-CoA racemase (P504s) in various malignant neoplasms and normal tissues: astudy of 761 cases.Hum Pathol. 2003 Aug;34(8):792-6. doi: 10.1016/s0046-8177(03)00268-5.
106 Angiogenin contributes to bladder cancer tumorigenesis by DNMT3b-mediated MMP2 activation.Oncotarget. 2016 Jul 12;7(28):43109-43123. doi: 10.18632/oncotarget.10097.
107 Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol. 2015 Jun 15;28(6):1144-55. doi: 10.1021/tx500393y. Epub 2015 Jun 3.
108 Correlation of ANXA1 expression with drug resistance and relapse in bladder cancer.Int J Clin Exp Pathol. 2014 Aug 15;7(9):5538-48. eCollection 2014.
109 A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett. 2012 Apr 5;210(1):100-6. doi: 10.1016/j.toxlet.2012.01.015. Epub 2012 Jan 28.
110 Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gi protein/MAPK/MMP9 intracellular signaling.Oncogene. 2020 Jan;39(3):574-586. doi: 10.1038/s41388-019-0964-6. Epub 2019 Sep 10.
111 Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer.PLoS Pathog. 2014 Oct 30;10(10):e1004485. doi: 10.1371/journal.ppat.1004485. eCollection 2014 Oct.
112 Autophagy induction enhances tetrandrine-induced apoptosis via the AMPK/mTOR pathway in human bladder cancer cells.Oncol Rep. 2017 Nov;38(5):3137-3143. doi: 10.3892/or.2017.5988. Epub 2017 Sep 21.
113 ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer.Mol Med Rep. 2017 Mar;15(3):1143-1148. doi: 10.3892/mmr.2017.6141. Epub 2017 Jan 24.
114 Utility of ATP7B in prediction of response to platinum-based chemotherapy in urothelial bladder cancer.Anticancer Res. 2013 Sep;33(9):3731-7.
115 Increased AURKA promotes cell proliferation and predicts poor prognosis in bladder cancer.BMC Syst Biol. 2018 Dec 14;12(Suppl 7):118. doi: 10.1186/s12918-018-0634-2.
116 Induction of Mitotic Catastrophe via Inhibition of Aurora B by Ionizing Radiation With Additive of Mulberry Water Extract in Human Bladder Cancer Cells.Integr Cancer Ther. 2019 Jan-Dec;18:1534735418808586. doi: 10.1177/1534735418808586. Epub 2018 Nov 15.
117 The c-MET Network as Novel Prognostic Marker for Predicting Bladder Cancer Patients with an Increased Risk of Developing Aggressive Disease.PLoS One. 2015 Jul 30;10(7):e0134552. doi: 10.1371/journal.pone.0134552. eCollection 2015.
118 Inference on germline BAP1 mutations and asbestos exposure from the analysis of familial and sporadic mesothelioma in a high-risk area.Genes Chromosomes Cancer. 2015 Jan;54(1):51-62. doi: 10.1002/gcc.22218. Epub 2014 Sep 18.
119 PKM2 Inhibitor Shikonin Overcomes the Cisplatin Resistance in Bladder Cancer by Inducing Necroptosis.Int J Biol Sci. 2018 Oct 20;14(13):1883-1891. doi: 10.7150/ijbs.27854. eCollection 2018.
120 Prognostic value and association with epithelial-mesenchymal transition and molecular subtypes of the proteoglycan biglycan in advanced bladder cancer.Urol Oncol. 2019 Aug;37(8):530.e9-530.e18. doi: 10.1016/j.urolonc.2019.05.011. Epub 2019 Jun 5.
121 cIAP-2 block apoptotic events in bladder cancer cells.Anticancer Res. 2003 Jul-Aug;23(4):3311-6.
122 Suppression of livin gene expression by siRNA leads to growth inhibition and apoptosis induction in human bladder cancer T24 cells.Biosci Biotechnol Biochem. 2010;74(5):1039-44. doi: 10.1271/bbb.90934. Epub 2010 May 7.
123 MiR-15 suppressed the progression of bladder cancer by targeting BMI1 oncogene via PI3K/AKT signaling pathway.Eur Rev Med Pharmacol Sci. 2019 Oct;23(20):8813-8822. doi: 10.26355/eurrev_201910_19276.
124 Correlation of BRCA2 gene mutation and prognosis as well as variant genes in invasive urothelial carcinoma of the bladder.Cancer Biomark. 2019;25(2):203-212. doi: 10.3233/CBM-182379.
125 Overexpression of REIC/Dkk-3 suppresses the expression of CD147 and inhibits the proliferation of human bladder cancer cells.Oncol Lett. 2017 Sep;14(3):3223-3228. doi: 10.3892/ol.2017.6548. Epub 2017 Jul 8.
126 Overexpression of the transmembrane protein BST-2 induces Akt and Erk phosphorylation in bladder cancer.Oncol Lett. 2017 Jul;14(1):999-1004. doi: 10.3892/ol.2017.6230. Epub 2017 May 23.
127 Systematic Multiomics Analysis of Alterations in C1QBP mRNA Expression and Relevance for Clinical Outcomes in Cancers.J Clin Med. 2019 Apr 15;8(4):513. doi: 10.3390/jcm8040513.
128 Methylation of tumor suppressor genes in a novel panel predicts clinical outcome in paraffin-embedded bladder tumors.Tumour Biol. 2014 Jun;35(6):5777-86. doi: 10.1007/s13277-014-1767-6. Epub 2014 Feb 28.
129 Potential therapeutic effects of N-butylidenephthalide from Radix Angelica Sinensis (Danggui) in human bladder cancer cells.BMC Complement Altern Med. 2017 Dec 6;17(1):523. doi: 10.1186/s12906-017-2034-3.
130 CCL17-CCR4 axis promotes metastasis via ERK/MMP13 pathway in bladder cancer.J Cell Biochem. 2019 Feb;120(2):1979-1989. doi: 10.1002/jcb.27494. Epub 2018 Sep 19.
131 Dual regulatory role of CCNA2 in modulating CDK6 and MET-mediated cell-cycle pathway and EMT progression is blocked by miR-381-3p in bladder cancer.FASEB J. 2019 Jan;33(1):1374-1388. doi: 10.1096/fj.201800667R. Epub 2018 Aug 23.
132 Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer.Int J Biol Macromol. 2019 Feb 15;123:322-334. doi: 10.1016/j.ijbiomac.2018.11.032. Epub 2018 Nov 8.
133 Metformin targets a YAP1-TEAD4 complex via AMPK to regulate CCNE1/2 in bladder cancer cells.J Exp Clin Cancer Res. 2019 Aug 27;38(1):376. doi: 10.1186/s13046-019-1346-1.
134 CCR4 Blockade Depletes Regulatory T Cells and Prolongs Survival in a Canine Model of Bladder Cancer.Cancer Immunol Res. 2019 Jul;7(7):1175-1187. doi: 10.1158/2326-6066.CIR-18-0751. Epub 2019 Jun 3.
135 CD163+ macrophages predict a poor prognosis in patients with primary T1 high-grade urothelial carcinoma of the bladder.World J Urol. 2019 Dec;37(12):2721-2726. doi: 10.1007/s00345-018-02618-1. Epub 2019 Mar 13.
136 CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer.Br J Cancer. 2018 Oct;119(8):961-970. doi: 10.1038/s41416-018-0291-7. Epub 2018 Oct 17.
137 Novel blood biomarkers of human urinary bladder cancer.Clin Cancer Res. 2006 Jun 1;12(11 Pt 1):3374-80. doi: 10.1158/1078-0432.CCR-05-2081.
138 Targeting immunotherapy for bladder cancer using anti-CD3 B7-H3 bispecific antibody.Cancer Med. 2018 Oct;7(10):5167-5177. doi: 10.1002/cam4.1775. Epub 2018 Sep 25.
139 Synergic effects of cancer stem cells markers, CD44 and embryonic stem cell transcription factor Nanog, on bladder cancer prognosis.Br J Biomed Sci. 2020 Apr;77(2):69-75. doi: 10.1080/09674845.2019.1692761. Epub 2019 Dec 20.
140 Targeting CD46 Enhances Anti-Tumoral Activity of Adenovirus Type 5 for Bladder Cancer.Int J Mol Sci. 2018 Sep 10;19(9):2694. doi: 10.3390/ijms19092694.
141 CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer.Clin Cancer Res. 2019 Jun 15;25(12):3561-3571. doi: 10.1158/1078-0432.CCR-18-3267. Epub 2019 Mar 19.
142 Expression of CD74 in bladder cancer and its suppression in association with cancer proliferation, invasion and angiogenesis in HT-1376 cells.Oncol Lett. 2018 May;15(5):7631-7638. doi: 10.3892/ol.2018.8309. Epub 2018 Mar 21.
143 Identification of key genes associated with bladder cancer using gene expression profiles.Oncol Lett. 2018 Jan;15(1):297-303. doi: 10.3892/ol.2017.7310. Epub 2017 Oct 31.
144 Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers.Sci Rep. 2016 Oct 24;6:35854. doi: 10.1038/srep35854.
145 Frequent somatic CDH1 loss-of-function mutations in plasmacytoid variant bladder cancer.Nat Genet. 2016 Apr;48(4):356-8. doi: 10.1038/ng.3503. Epub 2016 Feb 22.
146 Palbociclib triggers apoptosis in bladder cancer cells by Cdk2-induced Rad9-mediated reorganization of the Bak.Bcl-xl complex.Biochem Pharmacol. 2019 May;163:133-141. doi: 10.1016/j.bcp.2019.02.017. Epub 2019 Feb 14.
147 Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1.Urol Oncol. 2018 Jun;36(6):311.e1-311.e13. doi: 10.1016/j.urolonc.2018.03.001. Epub 2018 Mar 27.
148 Influence of spatial configuration on the expression of carcinoembryonic antigen and mucin antigens in human bladder cancer.Int J Cancer. 1997 Jun 11;71(6):986-92. doi: 10.1002/(sici)1097-0215(19970611)71:6<986::aid-ijc14>3.0.co;2-4.
149 Checkpoint kinase inhibitor AZD7762 strongly sensitises urothelial carcinoma cells to gemcitabine.J Exp Clin Cancer Res. 2017 Jan 3;36(1):1. doi: 10.1186/s13046-016-0473-1.
150 Paeonia lactiflora Pall inhibits bladder cancer growth involving phosphorylation of Chk2 in vitro and in vivo.J Ethnopharmacol. 2011 Apr 26;135(1):162-72. doi: 10.1016/j.jep.2011.03.011. Epub 2011 Mar 17.
151 Clostridium perfringens enterotoxin as a potential drug for intravesical treatment of bladder cancer.Biochem Biophys Res Commun. 2016 Sep 16;478(2):887-92. doi: 10.1016/j.bbrc.2016.08.046. Epub 2016 Aug 9.
152 The role of Clusterin in cancer metastasis.Cancer Manag Res. 2019 Mar 27;11:2405-2414. doi: 10.2147/CMAR.S196273. eCollection 2019.
153 MCT1 regulates aggressive and metabolic phenotypes in bladder cancer.J Cancer. 2018 Jun 15;9(14):2492-2501. doi: 10.7150/jca.25257. eCollection 2018.
154 Collagen Type VI Alpha 3 Chain Promotes Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Transforming Growth Factor (TGF-)/Smad Pathway.Med Sci Monit. 2018 Aug 1;24:5346-5354. doi: 10.12659/MSM.909811.
155 Metabolic Pathway Signatures Associated with Urinary Metabolite Biomarkers Differentiate Bladder Cancer Patients from Healthy Controls.Yonsei Med J. 2016 Jul;57(4):865-71. doi: 10.3349/ymj.2016.57.4.865.
156 Circular RNA hsa_circ_0075828 promotes bladder cancer cell proliferation through activation of CREB1.BMB Rep. 2020 Feb;53(2):82-87. doi: 10.5483/BMBRep.2020.53.2.059.
157 A CRISPR Interference of CBP and p300 Selectively Induced Synthetic Lethality in Bladder Cancer Cells In Vitro.Int J Biol Sci. 2019 May 11;15(6):1276-1286. doi: 10.7150/ijbs.32332. eCollection 2019.
158 Exosomes containing ErbB2/CRK induce vascular growth in premetastatic niches and promote metastasis of bladder cancer.Cancer Sci. 2019 Jul;110(7):2119-2132. doi: 10.1111/cas.14080. Epub 2019 Jun 24.
159 Adverse events of MVAC chemotherapy in patients with advanced urothelial cancer of the bladder.Hinyokika Kiyo. 2007 Apr;53(4):213-9.
160 Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer.Int J Cancer. 2007 Jun 1;120(11):2452-8. doi: 10.1002/ijc.22565.
161 Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy.Nat Rev Urol. 2018 Feb;15(2):92-111. doi: 10.1038/nrurol.2017.179. Epub 2017 Nov 14.
162 HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease.J Proteome Res. 2013 Jul 5;12(7):3519-28. doi: 10.1021/pr4004135. Epub 2013 Jun 18.
163 Cathepsin S inhibition changes regulatory T-cell activity in regulating bladder cancer and immune cell proliferation and apoptosis.Mol Immunol. 2017 Feb;82:66-74. doi: 10.1016/j.molimm.2016.12.018. Epub 2016 Dec 26.
164 A quantitative proteomic analysis uncovers the relevance of CUL3 in bladder cancer aggressiveness.PLoS One. 2013;8(1):e53328. doi: 10.1371/journal.pone.0053328. Epub 2013 Jan 8.
165 Epithelial-mesenchymal transition induced by GRO--CXCR2 promotes bladder cancer recurrence after intravesical chemotherapy.Oncotarget. 2017 Jul 11;8(28):45274-45285. doi: 10.18632/oncotarget.16786.
166 Investigating Colorimetric Protein Array Assay Schemes for Detection of Recurrence of Bladder Cancer.Biosensors (Basel). 2018 Jan 24;8(1):10. doi: 10.3390/bios8010010.
167 Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect. 2010 Nov;118(11):1545-50. doi: 10.1289/ehp.1002206.
168 Association of NR1I2, CYP3A5 and ABCB1 genetic polymorphisms with variability of temsirolimus pharmacokinetics and toxicity in patients with metastatic bladder cancer. Cancer Chemother Pharmacol. 2017 Sep;80(3):653-659.
169 High frequency loss of heterozygosity in the region of the DBH locus in bladder cancer.Chin Med J (Engl). 2000 Feb;113(2):117-9.
170 Deoxycytidine kinase expression underpins response to gemcitabine in bladder cancer.Clin Cancer Res. 2014 Nov 1;20(21):5435-45. doi: 10.1158/1078-0432.CCR-14-0542. Epub 2014 Sep 15.
171 Increased expression of DCLK1, a novel putative CSC maker, is associated with tumor aggressiveness and worse disease-specific survival in patients with bladder carcinomas.Exp Mol Pathol. 2019 Jun;108:164-172. doi: 10.1016/j.yexmp.2019.04.015. Epub 2019 Apr 25.
172 The identification of new biomarkers for bladder cancer: A study based on TCGA and GEO datasets.J Cell Physiol. 2019 Sep;234(9):15607-15618. doi: 10.1002/jcp.28208. Epub 2019 Feb 18.
173 Discoidin domain receptor 1 activity drives an aggressive phenotype in bladder cancer.Am J Transl Res. 2017 May 15;9(5):2500-2507. eCollection 2017.
174 MEK inhibition enhances efficacy of bacillus Calmette-Gurin on bladder cancer cells by reducing release of Toll-like receptor 2-activated antimicrobial peptides.Oncotarget. 2017 May 26;8(32):53168-53179. doi: 10.18632/oncotarget.18230. eCollection 2017 Aug 8.
175 Decreased plasma DEK Oncogene Levels Correlate with p16-Negative Disease and Advanced Tumor Stage in a Case-Control Study of Patients with Head and Neck Squamous Cell Carcinoma.Transl Oncol. 2018 Feb;11(1):168-174. doi: 10.1016/j.tranon.2017.12.001. Epub 2017 Dec 28.
176 Novel fusion transcripts in bladder cancer identified by RNA-seq.Cancer Lett. 2016 May 1;374(2):224-8. doi: 10.1016/j.canlet.2016.02.010. Epub 2016 Feb 16.
177 DHCR24 predicts poor clinicopathological features of patients with bladder cancer: A STROBE-compliant study.Medicine (Baltimore). 2018 Sep;97(39):e11830. doi: 10.1097/MD.0000000000011830.
178 MIR-300 in the imprinted DLK1-DIO3 domain suppresses the migration of bladder cancer by regulating the SP1/MMP9 pathway.Cell Cycle. 2018;17(24):2790-2801. doi: 10.1080/15384101.2018.1557490. Epub 2018 Dec 18.
179 Up-regulation of endothelial delta-like 4 expression correlates with vessel maturation in bladder cancer.Clin Cancer Res. 2006 Aug 15;12(16):4836-44. doi: 10.1158/1078-0432.CCR-06-0285.
180 miR-4324-RACGAP1-STAT3-ESR1 feedback loop inhibits proliferation and metastasis of bladder cancer.Int J Cancer. 2019 Jun 15;144(12):3043-3055. doi: 10.1002/ijc.32036. Epub 2019 Jan 12.
181 MiR-194-5p inhibits cell migration and invasion in bladder cancer by targeting E2F3.J BUON. 2018 Sep-Oct;23(5):1492-1499.
182 Exploration of the pathways and interaction network involved in bladder cancer cell line with knockdown of Opa interacting protein 5.Pathol Res Pract. 2017 Sep;213(9):1059-1066. doi: 10.1016/j.prp.2017.07.029. Epub 2017 Aug 1.
183 A novel functional polymorphism C1797G in the MDM2 promoter is associated with risk of bladder cancer in a Chinese population.Clin Cancer Res. 2008 Jun 1;14(11):3633-40. doi: 10.1158/1078-0432.CCR-07-5155.
184 The effect of miR-124-3p on cell proliferation and apoptosis in bladder cancer by targeting EDNRB.Arch Med Sci. 2019 Sep;15(5):1154-1162. doi: 10.5114/aoms.2018.78743. Epub 2018 Oct 3.
185 Combination of Erlotinib and Naproxen Employing Pulsatile or Intermittent Dosing Profoundly Inhibits Urinary Bladder Cancers.Cancer Prev Res (Phila). 2020 Mar;13(3):273-282. doi: 10.1158/1940-6207.CAPR-19-0339. Epub 2019 Dec 9.
186 Differential mTOR pathway profiles in bladder cancer cell line subtypes to predict sensitivity to mTOR inhibition.Urol Oncol. 2017 Oct;35(10):593-599. doi: 10.1016/j.urolonc.2017.03.025. Epub 2017 Apr 18.
187 N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation.Cancer Sci. 2014 Feb;105(2):219-27. doi: 10.1111/cas.12328. Epub 2014 Jan 7.
188 Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX) and Sirtuin1 (SIRT1).Molecules. 2016 Jun 28;21(7):849. doi: 10.3390/molecules21070849.
189 p300 mediates cellular resistance to doxorubicin in bladder cancer.Mol Med Rep. 2012 Jan;5(1):173-6. doi: 10.3892/mmr.2011.593. Epub 2011 Sep 20.
190 Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration.Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11701-E11710. doi: 10.1073/pnas.1804506115. Epub 2018 Nov 21.
191 Sex steroid hormone receptors in bladder cancer: Usefulness in differential diagnosis and implications in histogenesis of bladder cancer.Urol Oncol. 2019 Jun;37(6):353.e9-353.e15. doi: 10.1016/j.urolonc.2019.01.023. Epub 2019 Feb 6.
192 Cancer-associated fibroblasts promote cisplatin resistance in bladder cancer cells by increasing IGF-1/ER/Bcl-2 signalling.Cell Death Dis. 2019 May 10;10(5):375. doi: 10.1038/s41419-019-1581-6.
193 The enhanced expression of estrogen-related receptor in human bladder cancer tissues and the effects of estrogen-related receptor knockdown on bladder cancer cells.J Cell Biochem. 2019 Aug;120(8):13841-13852. doi: 10.1002/jcb.28657. Epub 2019 Apr 11.
194 ATG7 Overexpression Is Crucial for Tumorigenic Growth of Bladder Cancer InVitro and InVivo by Targeting the ETS2/miRNA196b/FOXO1/p27 Axis.Mol Ther Nucleic Acids. 2017 Jun 16;7:299-313. doi: 10.1016/j.omtn.2017.04.012. Epub 2017 Apr 14.
195 Down-regulation of A-FABP predicts non-muscle invasive bladder cancer progression: investigation with a long term clinical follow-up.BMC Cancer. 2018 Dec 10;18(1):1239. doi: 10.1186/s12885-018-5137-4.
196 Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy.Nat Genet. 2013 Dec;45(12):1464-9. doi: 10.1038/ng.2799. Epub 2013 Oct 13.
197 Disruption of the FA/BRCA pathway in bladder cancer.Cytogenet Genome Res. 2007;118(2-4):166-76. doi: 10.1159/000108297.
198 Emphasis of FAS/FASL gene polymorphism in patients with non-muscle invasive bladder cancer.Ir J Med Sci. 2018 Nov;187(4):1115-1119. doi: 10.1007/s11845-018-1764-7. Epub 2018 Feb 16.
199 Down-regulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis.J Cell Physiol. 2019 Mar;234(3):3088-3104. doi: 10.1002/jcp.27129. Epub 2018 Sep 17.
200 High-throughput tissue microarray analysis of 11q13 gene amplification (CCND1, FGF3, FGF4, EMS1) in urinary bladder cancer.J Pathol. 2003 Dec;201(4):603-8. doi: 10.1002/path.1481.
201 CpG hypermethylation of human four-and-a-half LIM domains 1 contributes to migration and invasion activity of human bladder cancer.Int J Mol Med. 2010 Aug;26(2):241-7. doi: 10.3892/ijmm_00000458.
202 Low levels of PSMA expression limit the utility of (18)F-DCFPyL PET/CT for imaging urothelial carcinoma.Ann Nucl Med. 2018 Jan;32(1):69-74. doi: 10.1007/s12149-017-1216-x. Epub 2017 Oct 24.
203 Short hairpin RNA targeting FOXQ1 inhibits invasion and metastasis via the reversal of epithelial-mesenchymal transition in bladder cancer.Int J Oncol. 2013 Apr;42(4):1271-8. doi: 10.3892/ijo.2013.1807. Epub 2013 Feb 5.
204 Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-1 in bladder cancer cells.J Exp Clin Cancer Res. 2019 Mar 1;38(1):111. doi: 10.1186/s13046-019-1102-6.
205 KLF5 promotes cell migration by up-regulating FYN in bladder cancer cells.FEBS Lett. 2016 Feb;590(3):408-18. doi: 10.1002/1873-3468.12069. Epub 2016 Feb 1.
206 Analysis of bladder cancer subtypes in neurogenic bladder tumors.Can J Urol. 2018 Feb;25(1):9161-9167.
207 Nanoscale bubble delivered YCD-TK/Cx26 gene therapeutic system suppresses tumor growth by inducing necrosis of tumor tissues in mouse Xenograft bladder cancer models.Eur Rev Med Pharmacol Sci. 2019 Sep;23(17):7338-7349. doi: 10.26355/eurrev_201909_18839.
208 Inhibition of GLI2 with antisense-oligonucleotides: A potential therapy for the treatment of bladder cancer.J Cell Physiol. 2019 Nov;234(11):20634-20647. doi: 10.1002/jcp.28669. Epub 2019 Apr 22.
209 TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer.J Cell Biochem. 2018 Feb;119(2):1791-1803. doi: 10.1002/jcb.26340. Epub 2017 Sep 11.
210 Gonadotropin-releasing hormone (GnRH) and GnRH receptor in bladder cancer epithelia and GnRH effect on bladder cancer cell proliferation.Urol Int. 2008;80(4):431-8. doi: 10.1159/000132703. Epub 2008 Jun 27.
211 Roles of ER and GPR30 in Proliferative Response of Human Bladder Cancer Cell to Estrogen.Biomed Res Int. 2015;2015:251780. doi: 10.1155/2015/251780. Epub 2015 May 18.
212 Knocking down glycoprotein nonmetastatic melanoma protein B suppresses the proliferation, migration, and invasion in bladder cancer cells.Tumour Biol. 2017 Apr;39(4):1010428317699119. doi: 10.1177/1010428317699119.
213 GPR137 is a promising novel bio-marker for the prognosis of bladder cancer patients.Medicine (Baltimore). 2019 Aug;98(35):e16576. doi: 10.1097/MD.0000000000016576.
214 G Protein-Coupled Receptor 87 (GPR87) Promotes Cell Proliferation in Human Bladder Cancer Cells.Int J Mol Sci. 2015 Oct 14;16(10):24319-31. doi: 10.3390/ijms161024319.
215 Sugar industry sponsorship of germ-free rodent studies linking sucrose to hyperlipidemia and cancer: An historical analysis of internal documents.PLoS Biol. 2017 Nov 21;15(11):e2003460. doi: 10.1371/journal.pbio.2003460. eCollection 2017 Nov.
216 Characterization of Histone Deacetylase Expression Within In Vitro and In Vivo Bladder Cancer Model Systems.Int J Mol Sci. 2019 May 27;20(10):2599. doi: 10.3390/ijms20102599.
217 Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment.J Exp Clin Cancer Res. 2014 Jul 10;33(1):59. doi: 10.1186/s13046-014-0059-8.
218 Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling.J Cell Biochem. 2014 Oct;115(10):1762-7. doi: 10.1002/jcb.24842.
219 Dysregulated expression of homebox gene HOXA13 is correlated with the poor prognosis in bladder cancer.Wien Klin Wochenschr. 2017 Jun;129(11-12):391-397. doi: 10.1007/s00508-016-1108-4. Epub 2016 Nov 9.
220 The HOXB13 G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies.Cancer Epidemiol Biomarkers Prev. 2015 Sep;24(9):1366-72. doi: 10.1158/1055-9965.EPI-15-0247. Epub 2015 Jun 24.
221 Association of Glutathione S-transferase gene polymorphism with bladder Cancer susceptibility.BMC Cancer. 2018 Nov 12;18(1):1088. doi: 10.1186/s12885-018-5014-1.
222 HRAS as a potential therapeutic target of salirasib RAS inhibitor in bladder cancer. Int J Oncol. 2018 Aug;53(2):725-736.
223 Integrative genomic analyses of the histamine H1 receptor and its role in cancer prediction.Int J Mol Med. 2014 Apr;33(4):1019-26. doi: 10.3892/ijmm.2014.1649. Epub 2014 Feb 10.
224 Clinical, prognostic, and therapeutic significance of heat shock protein 27 in bladder cancer.Oncotarget. 2018 Jan 8;9(8):7961-7974. doi: 10.18632/oncotarget.24091. eCollection 2018 Jan 30.
225 Systematic verification of bladder cancer-associated tissue protein biomarker candidates in clinical urine specimens.Oncotarget. 2018 Jul 20;9(56):30731-30747. doi: 10.18632/oncotarget.24578. eCollection 2018 Jul 20.
226 Overexpression of Tat-interacting protein 30 inhibits the proliferation, migration, invasion and promotes apoptosis in bladder cancer cells.J Cancer Res Ther. 2018 Sep;14(Supplement):S713-S718. doi: 10.4103/0973-1482.206869.
227 ENERGIZE: a Phase III study of neoadjuvant chemotherapy alone or with nivolumab with/without linrodostat mesylate for muscle-invasive bladder cancer.Future Oncol. 2020 Jan;16(2):4359-4368. doi: 10.2217/fon-2019-0611. Epub 2019 Dec 11.
228 Antitumor effects of human interferon-alpha 2b secreted by recombinant bacillus Calmette-Gurin vaccine on bladder cancer cells.J Zhejiang Univ Sci B. 2012 May;13(5):335-41. doi: 10.1631/jzus.B1100366.
229 Down-regulation of type I interferon receptor sensitizes bladder cancer cells to vesicular stomatitis virus-induced cell death.Int J Cancer. 2010 Aug 15;127(4):830-8. doi: 10.1002/ijc.25088.
230 Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-beta gene therapy results partially from various antiangiogenic effects including endothelial cell apoptosis.Clin Cancer Res. 2002 Apr;8(4):1258-70.
231 Loss of IGF2R indicates a poor prognosis and promotes cell proliferation and tumorigenesis in bladder cancer via AKT signaling pathway.Neoplasma. 2020 Jan;67(1):129-136. doi: 10.4149/neo_2019_190206N108. Epub 2019 Dec 17.
232 IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer.BMC Cancer. 2017 Sep 7;17(1):636. doi: 10.1186/s12885-017-3618-5.
233 Inhibition of IGFBP-2 improves the sensitivity of bladder cancer cells to cisplatin via upregulating the expression of maspin.Int J Mol Med. 2015 Aug;36(2):595-601. doi: 10.3892/ijmm.2015.2250. Epub 2015 Jun 17.
234 Effectiveness of two different dose administration regimens of an IL-15 superagonist complex (ALT-803) in an orthotopic bladder cancer mouse model.J Transl Med. 2019 Jan 17;17(1):29. doi: 10.1186/s12967-019-1778-6.
235 Association of 3 Common Polymorphisms of IL-27 Gene with Susceptibility to Cancer in Chinese: Evidence From an Updated Meta-Analysis of 27 Studies.Med Sci Monit. 2015 Aug 24;21:2505-13. doi: 10.12659/MSM.895032.
236 Identification of pro-inflammatory cytokines associated with muscle invasive bladder cancer; the roles of IL-5, IL-20, and IL-28A.PLoS One. 2012;7(9):e40267. doi: 10.1371/journal.pone.0040267. Epub 2012 Sep 4.
237 NLS-Cholic Acid Conjugation to IL-5R-Specific Antibody Improves Cellular Accumulation and In Vivo Tumor-Targeting Properties in a Bladder Cancer Model.Bioconjug Chem. 2018 Apr 18;29(4):1352-1363. doi: 10.1021/acs.bioconjchem.8b00077. Epub 2018 Mar 1.
238 Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression.Mol Cancer. 2018 Jan 31;17(1):19. doi: 10.1186/s12943-018-0771-7.
239 MicroRNA-328-3p inhibits the tumorigenesis of bladder cancer through targeting ITGA5 and inactivating PI3K/AKT pathway.Eur Rev Med Pharmacol Sci. 2019 Jun;23(12):5139-5148. doi: 10.26355/eurrev_201906_18178.
240 Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer.Urology. 2002 Sep;60(3):531-6. doi: 10.1016/s0090-4295(02)01748-x.
241 LncRNA ITGB1 promotes the development of bladder cancer through regulating microRNA-10a expression.Eur Rev Med Pharmacol Sci. 2019 Aug;23(16):6858-6867. doi: 10.26355/eurrev_201908_18725.
242 Inositol 1,4,5-trisphosphate (IP3) receptor type1 (IP3R1) modulates the acquisition of cisplatin resistance in bladder cancer cell lines.Oncogene. 2005 Feb 17;24(8):1396-402. doi: 10.1038/sj.onc.1208313.
243 Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling.BMC Cancer. 2019 Feb 11;19(1):137. doi: 10.1186/s12885-019-5353-6.
244 The RING domain in the anti-apoptotic protein XIAP stabilizes c-Myc protein and preserves anchorage-independent growth of bladder cancer cells.J Biol Chem. 2019 Apr 12;294(15):5935-5944. doi: 10.1074/jbc.RA118.005621. Epub 2019 Feb 28.
245 Connexin 26 is down-regulated by KDM5B in the progression of bladder cancer.Int J Mol Sci. 2013 Apr 11;14(4):7866-79. doi: 10.3390/ijms14047866.
246 KIF20B promotes the progression of clear cell renal cell carcinoma by stimulating cell proliferation.J Cell Physiol. 2019 Sep;234(9):16517-16525. doi: 10.1002/jcp.28322. Epub 2019 Feb 25.
247 Upregulated UHRF1 promotes bladder cancer cell invasion by epigenetic silencing of KiSS1.PLoS One. 2014 Oct 1;9(10):e104252. doi: 10.1371/journal.pone.0104252. eCollection 2014.
248 MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells.Oncotarget. 2017 May 16;8(20):33064-33077. doi: 10.18632/oncotarget.16524.
249 Novel variants in MLL confer to bladder cancer recurrence identified by whole-exome sequencing.Oncotarget. 2016 Jan 19;7(3):2629-45. doi: 10.18632/oncotarget.6380.
250 Rapid and quantitative detection of urinary Cyfra21-1 using fluorescent nanosphere-based immunochromatographic test strip for diagnosis and prognostic monitoring of bladder cancer.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):4266-4272. doi: 10.1080/21691401.2019.1687491.
251 Inhibition of bladder cancer invasion by Sp1-mediated BTG2 expression via inhibition of DNA methyltransferase 1.FEBS J. 2014 Dec;281(24):5581-601. doi: 10.1111/febs.13099. Epub 2014 Oct 30.
252 Detection of urinary survivin using a magnetic particles-based chemiluminescence immunoassay for the preliminary diagnosis of bladder cancer and renal cell carcinoma combined with LAPTM4B.Oncol Lett. 2018 May;15(5):7923-7933. doi: 10.3892/ol.2018.8317. Epub 2018 Mar 22.
253 The role of LIM and SH3 protein-1 in bladder cancer metastasis. Oncol Lett. 2017 Oct;14(4):4829-4834.
254 Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA.Am J Transl Res. 2019 Nov 15;11(11):6838-6849. eCollection 2019.
255 The Lin28/let-7a/c-Myc pathway plays a role in non-muscle invasive bladder cancer.Cell Tissue Res. 2013 Nov;354(2):533-41. doi: 10.1007/s00441-013-1715-6. Epub 2013 Sep 15.
256 The origins of bladder cancer.Lab Invest. 2008 Jul;88(7):686-93. doi: 10.1038/labinvest.2008.48. Epub 2008 May 12.
257 RETRACTED: lncRNA PEG10 promotes cell survival, invasion and migration by sponging miR-134 in human bladder cancer.Biomed Pharmacother. 2019 Jun;114:108814. doi: 10.1016/j.biopha.2019.108814. Epub 2019 Apr 4.
258 The IL-1RN and IL-4 gene polymorphisms are potential genetic markers of susceptibility to bladder cancer: a case-control study.World J Urol. 2015 Mar;33(3):389-95. doi: 10.1007/s00345-014-1323-4. Epub 2014 May 22.
259 Up-regulation of BLT2 is critical for the survival of bladder cancer cells.Exp Mol Med. 2011 Mar 31;43(3):129-37. doi: 10.3858/emm.2011.43.3.014.
260 LY6K is a novel molecular target in bladder cancer on basis of integrate genome-wide profiling.Br J Cancer. 2011 Jan 18;104(2):376-86. doi: 10.1038/sj.bjc.6605990. Epub 2010 Nov 9.
261 Mad1 suppresses bladder cancer cell proliferation by inhibiting human telomerase reverse transcriptase transcription and telomerase activity.Urology. 2006 Jun;67(6):1335-40. doi: 10.1016/j.urology.2005.12.029.
262 Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide.Clin Cancer Res. 2001 Jan;7(1):23-31.
263 MEK1 and MEK2 differentially regulate human insulin- and insulin glargine-induced human bladder cancer T24 cell proliferation.Chin Med J (Engl). 2012 Dec;125(23):4197-201.
264 KIF15 promotes bladder cancer proliferation via the MEK-ERK signaling pathway.Cancer Manag Res. 2019 Feb 26;11:1857-1868. doi: 10.2147/CMAR.S191681. eCollection 2019.
265 Mutations in FGFR3 and PIK3CA, singly or combined with RAS and AKT1, are associated with AKT but not with MAPK pathway activation in urothelial bladder cancer.Hum Pathol. 2012 Oct;43(10):1573-82. doi: 10.1016/j.humpath.2011.10.026. Epub 2012 Mar 12.
266 Silencing TAK1 alters gene expression signatures in bladder cancer cells.Oncol Lett. 2017 May;13(5):2975-2981. doi: 10.3892/ol.2017.5819. Epub 2017 Mar 7.
267 Inhibition of TPL2 by interferon- suppresses bladder cancer through activation of PDE4D.J Exp Clin Cancer Res. 2018 Nov 27;37(1):288. doi: 10.1186/s13046-018-0971-4.
268 Activation of cyclic AMP/PKA pathway inhibits bladder cancer cell invasion by targeting MAP4-dependent microtubule dynamics.Urol Oncol. 2014 Jan;32(1):47.e21-8. doi: 10.1016/j.urolonc.2013.06.017. Epub 2013 Oct 17.
269 RhoGDI promotes Sp1/MMP-2 expression and bladder cancer invasion through perturbing miR-200c-targeted JNK2 protein translation.Mol Oncol. 2017 Nov;11(11):1579-1594. doi: 10.1002/1878-0261.12132. Epub 2017 Sep 11.
270 p38 mitogen-activated protein kinase-driven MAPKAPK2 regulates invasion of bladder cancer by modulation of MMP-2 and MMP-9 activity.Cancer Res. 2010 Jan 15;70(2):832-41. doi: 10.1158/0008-5472.CAN-09-2918. Epub 2010 Jan 12.
271 Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines.Investig Clin Urol. 2016 Jan;57(1):63-72. doi: 10.4111/icu.2016.57.1.63. Epub 2016 Jan 11.
272 Midkine promoter-based conditionally replicative adenovirus for targeting midkine-expressing human bladder cancer model.Urology. 2007 Nov;70(5):1009-13. doi: 10.1016/j.urology.2007.07.003. Epub 2007 Oct 24.
273 Emodin enhances cisplatin-induced cytotoxicity in human bladder cancer cells through ROS elevation and MRP1 downregulation.BMC Cancer. 2016 Aug 2;16:578. doi: 10.1186/s12885-016-2640-3.
274 Inhibition of bladder tumour growth by sirolimus in an experimental carcinogenesis model.BJU Int. 2011 Jan;107(1):135-43. doi: 10.1111/j.1464-410X.2010.09326.x.
275 Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors.BMC Cancer. 2014 May 3;14:310. doi: 10.1186/1471-2407-14-310.
276 Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer.Cancer Sci. 2016 Sep;107(9):1233-42. doi: 10.1111/cas.13002. Epub 2016 Sep 6.
277 Genetic polymorphisms in matrix metalloproteinases (MMPs) and tissue inhibitors of MPs (TIMPs), and bladder cancer susceptibility.BJU Int. 2013 Dec;112(8):1207-14. doi: 10.1111/bju.12230. Epub 2013 Jul 2.
278 Transforming growth factor? induces epithelialmesenchymal transition and increased expression of matrix metalloproteinase?6 via miR?00b downregulation in bladder cancer cells.Mol Med Rep. 2014 Sep;10(3):1549-54. doi: 10.3892/mmr.2014.2366. Epub 2014 Jul 7.
279 Association of Matrix Metalloproteinase-8 Genotypes with the Risk of Bladder Cancer.Anticancer Res. 2018 Sep;38(9):5159-5164. doi: 10.21873/anticanres.12838.
280 Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case-control study using a structural equation modeling.PLoS One. 2014 Apr 10;9(4):e94566. doi: 10.1371/journal.pone.0094566. eCollection 2014.
281 Low frequency of HNPCC-associated microsatellite instability and aberrant MMR protein expression in early-onset bladder cancer.Am J Clin Pathol. 2014 Nov;142(5):634-9. doi: 10.1309/AJCPVTCJ4VU5HKVZ.
282 A Whole-genome CRISPR Screen Identifies a Role of MSH2 in Cisplatin-mediated Cell Death in Muscle-invasive Bladder Cancer.Eur Urol. 2019 Feb;75(2):242-250. doi: 10.1016/j.eururo.2018.10.040. Epub 2018 Nov 7.
283 MicroRNA-143/Musashi-2/KRAS cascade contributes positively to carcinogenesis in human bladder cancer.Cancer Sci. 2019 Jul;110(7):2189-2199. doi: 10.1111/cas.14035. Epub 2019 May 27.
284 High CD204+ tumor-infiltrating macrophage density predicts a poor prognosis in patients with urothelial cell carcinoma of the bladder.Oncotarget. 2015 Aug 21;6(24):20204-14. doi: 10.18632/oncotarget.3887.
285 RON is overexpressed in bladder cancer and contributes to tumorigenic phenotypes in 5637 cells.Oncol Lett. 2018 May;15(5):6547-6554. doi: 10.3892/ol.2018.8135. Epub 2018 Feb 28.
286 miR-30e-5p suppresses cell proliferation and migration in bladder cancer through regulating metadherin.J Cell Biochem. 2019 Sep;120(9):15924-15932. doi: 10.1002/jcb.28866. Epub 2019 May 8.
287 Metallothionein isoform 1 and 2 gene expression in the human bladder: evidence for upregulation of MT-1X mRNA in bladder cancer.Cancer Detect Prev. 2001;25(1):62-75.
288 Interaction of YAP1 and mTOR promotes bladder cancer progression.Int J Oncol. 2020 Jan;56(1):232-242. doi: 10.3892/ijo.2019.4922. Epub 2019 Nov 25.
289 Unraveling the Receptor-Ligand Interactions between Bladder Cancer Cells and the Endothelium Using AFM.Biophys J. 2017 Mar 28;112(6):1246-1257. doi: 10.1016/j.bpj.2017.01.033.
290 Association of nineteen polymorphisms from seven DNA repair genes and the risk for bladder cancer in Gansu province of China.Oncotarget. 2016 May 24;7(21):31372-83. doi: 10.18632/oncotarget.9146.
291 Expression of N-Myc Downstream-Regulated Gene 2 in Bladder Cancer and Its Potential Utility as a Urinary Diagnostic Biomarker.Med Sci Monit. 2017 Sep 27;23:4644-4649. doi: 10.12659/msm.901610.
292 Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway.Cancer Lett. 2017 Sep 10;403:305-317. doi: 10.1016/j.canlet.2017.06.027. Epub 2017 Jul 4.
293 Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer.Bioorg Med Chem. 2017 Feb 1;25(3):1242-1249. doi: 10.1016/j.bmc.2016.12.042. Epub 2016 Dec 27.
294 Prognostic value of serum nicotinamide phosphoribosyltransferase in patients with bladder cancer.Croat Med J. 2014 Oct;55(5):507-13. doi: 10.3325/cmj.2014.55.507.
295 Honokiol inhibits bladder cancer cell invasion through repressing SRC-3 expression and epithelial-mesenchymal transition.Oncol Lett. 2017 Oct;14(4):4294-4300. doi: 10.3892/ol.2017.6665. Epub 2017 Jul 25.
296 Repression of GRIM19 expression potentiates cisplatin chemoresistance in advanced bladder cancer cells via disrupting ubiquitination-mediated Bcl-xL degradation.Cancer Chemother Pharmacol. 2018 Oct;82(4):593-605. doi: 10.1007/s00280-018-3651-3. Epub 2018 Jul 21.
297 Targeting Nectin-4 in Bladder Cancer.Cancer Discov. 2017 Aug;7(8):OF3. doi: 10.1158/2159-8290.CD-NB2017-095. Epub 2017 Jun 20.
298 NRP-1 expression in bladder cancer and its implications for tumor progression.Tumour Biol. 2014 Jun;35(6):6089-94. doi: 10.1007/s13277-014-1806-3. Epub 2014 Mar 14.
299 NOTCH1 regulates the proliferation and migration of bladder cancer cells by cooperating with long non-coding RNA HCG18 and microRNA-34c-5p.J Cell Biochem. 2019 Apr;120(4):6596-6604. doi: 10.1002/jcb.27954. Epub 2018 Nov 13.
300 Urinary-exosomal miR-2909: A novel pathognomonic trait of prostate cancer severity.J Biotechnol. 2017 Oct 10;259:135-139. doi: 10.1016/j.jbiotec.2017.07.029. Epub 2017 Jul 29.
301 Association of nucleophosmin/B23 with bladder cancer recurrence based on immunohistochemical assessment in clinical samples.Acta Pharmacol Sin. 2008 Mar;29(3):364-70. doi: 10.1111/j.1745-7254.2008.00747.x.
302 Cell-type-specific CD73 expression is an independent prognostic factor in bladder cancer.Carcinogenesis. 2019 Mar 12;40(1):84-92. doi: 10.1093/carcin/bgy154.
303 A feed forward loop enforces YAP/TAZ signaling during tumorigenesis.Nat Commun. 2018 Aug 29;9(1):3510. doi: 10.1038/s41467-018-05939-2.
304 The role of oncostatin M receptor gene polymorphisms in bladder cancer.World J Surg Oncol. 2019 Feb 12;17(1):30. doi: 10.1186/s12957-018-1555-7.
305 Clinicopathological and cellular signature of PAK1 in human bladder cancer.Tumour Biol. 2015 Apr;36(4):2359-68. doi: 10.1007/s13277-014-2843-7. Epub 2014 Nov 21.
306 Expression of PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) in human urinary bladder transitional cell carcinoma.Immunobiology. 2014 Jun;219(6):469-74. doi: 10.1016/j.imbio.2014.02.003. Epub 2014 Feb 25.
307 PBRM1 suppresses bladder cancer by cyclin B1 induced cell cycle arrest.Oncotarget. 2015 Jun 30;6(18):16366-78. doi: 10.18632/oncotarget.3879.
308 LINE-1 methylation in leukocyte DNA, interaction with phosphatidylethanolamine N-methyltransferase variants and bladder cancer risk.Br J Cancer. 2014 Apr 15;110(8):2123-30. doi: 10.1038/bjc.2014.67. Epub 2014 Mar 4.
309 Targeting of MCT1 and PFKFB3 influences cell proliferation and apoptosis in bladder cancer by altering the tumor microenvironment.Oncol Rep. 2016 Aug;36(2):945-51. doi: 10.3892/or.2016.4884. Epub 2016 Jun 16.
310 Proteomics analysis of bladder cancer invasion: Targeting EIF3D for therapeutic intervention.Oncotarget. 2017 Apr 20;8(41):69435-69455. doi: 10.18632/oncotarget.17279. eCollection 2017 Sep 19.
311 PIGU overexpression adds value to TNM staging in the prognostic stratification of patients with hepatocellular carcinoma.Hum Pathol. 2019 Jan;83:90-99. doi: 10.1016/j.humpath.2018.08.013. Epub 2018 Aug 30.
312 MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway.Hum Cell. 2020 Jan;33(1):185-194. doi: 10.1007/s13577-019-00285-x. Epub 2019 Oct 11.
313 Apigenin Suppresses the IL-1-Induced Expression of the Urokinase-Type Plasminogen Activator Receptor by Inhibiting MAPK-Mediated AP-1 and NF-B Signaling in Human Bladder Cancer T24 Cells.J Agric Food Chem. 2018 Jul 25;66(29):7663-7673. doi: 10.1021/acs.jafc.8b02351. Epub 2018 Jul 9.
314 Identification of urine PLK2 as a marker of bladder tumors by proteomic analysis.World J Urol. 2010 Feb;28(1):117-22. doi: 10.1007/s00345-009-0432-y. Epub 2009 Jun 9.
315 Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer.Br J Cancer. 2016 Jul 26;115(3):354-63. doi: 10.1038/bjc.2016.179. Epub 2016 Jun 16.
316 Proteomic characterization of arsenic and cadmium exposure in bladder cells.Rapid Commun Mass Spectrom. 2020 Apr;34 Suppl 1:e8578. doi: 10.1002/rcm.8578. Epub 2020 Feb 8.
317 Comparison of arsenic methylation capacity and polymorphisms of arsenic methylation genes between bladder cancer and upper tract urothelial carcinoma.Toxicol Lett. 2018 Oct 1;295:64-73. doi: 10.1016/j.toxlet.2018.05.035. Epub 2018 May 30.
318 Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk.Carcinogenesis. 2009 May;30(5):763-8. doi: 10.1093/carcin/bgp046. Epub 2009 Feb 23.
319 Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-/Smad signaling pathway.Oncotarget. 2014 Jul 30;5(14):5700-11. doi: 10.18632/oncotarget.2144.
320 Wild-type p53-induced phosphatase 1 is a prognostic marker and therapeutic target in bladder transitional cell carcinoma.Oncol Lett. 2017 Feb;13(2):875-880. doi: 10.3892/ol.2016.5475. Epub 2016 Dec 8.
321 Analysis of Autoantibodies Related to Tumor Progression in Sera from Patients with High-grade Non-muscle-invasive Bladder Cancer.Anticancer Res. 2017 Dec;37(12):6705-6714. doi: 10.21873/anticanres.12129.
322 Disruption of serine/threonine protein phosphatase 5 inhibits tumorigenesis of urinary bladder cancer cells.Int J Oncol. 2017 Jul;51(1):39-48. doi: 10.3892/ijo.2017.3997. Epub 2017 May 16.
323 Interaction between polymorphisms of DNA repair genes significantly modulated bladder cancer risk.Int J Med Sci. 2012;9(6):498-505. doi: 10.7150/ijms.4799. Epub 2012 Aug 17.
324 Circular RNA circ-PRMT5 facilitates non-small cell lung cancer proliferation through upregulating EZH2 via sponging miR-377/382/498.Gene. 2019 Dec 15;720:144099. doi: 10.1016/j.gene.2019.144099. Epub 2019 Aug 31.
325 The serine protease prostasin (PRSS8) is a potential biomarker for early detection of ovarian cancer.J Ovarian Res. 2016 Mar 31;9:20. doi: 10.1186/s13048-016-0228-9.
326 Contribution of prostate stem cell antigen variation rs2294008 to the risk of bladder cancer.Medicine (Baltimore). 2019 Apr;98(16):e15179. doi: 10.1097/MD.0000000000015179.
327 Long noncoding RNA HCG22 suppresses proliferation and metastasis of bladder cancer cells by regulation of PTBP1.J Cell Physiol. 2020 Feb;235(2):1711-1722. doi: 10.1002/jcp.29090. Epub 2019 Jul 15.
328 CIRBP is a novel oncogene in human bladder cancer inducing expression of HIF-1.Cell Death Dis. 2018 Oct 12;9(10):1046. doi: 10.1038/s41419-018-1109-5.
329 Detection of tyrosine kinase inhibitors-induced COX-2 expression in bladder cancer by fluorocoxib A.Oncotarget. 2019 Aug 27;10(50):5168-5180. doi: 10.18632/oncotarget.27125. eCollection 2019 Aug 27.
330 Retinoic Acid-Related Orphan Receptor C Regulates Proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer.Cancer Res. 2019 May 15;79(10):2604-2618. doi: 10.1158/0008-5472.CAN-18-3842. Epub 2019 Feb 26.
331 Overexpression of PTK6 predicts poor prognosis in bladder cancer patients.J Cancer. 2017 Sep 27;8(17):3464-3473. doi: 10.7150/jca.21318. eCollection 2017.
332 Overexpression of PTP4A3 is associated with metastasis and unfavorable prognosis in bladder cancer.World J Urol. 2016 Jun;34(6):835-46. doi: 10.1007/s00345-015-1698-x. Epub 2015 Oct 3.
333 Downregulation of Ral GTPase-activating protein promotes tumor invasion and metastasis of bladder cancer.Oncogene. 2013 Feb 14;32(7):894-902. doi: 10.1038/onc.2012.101. Epub 2012 Mar 26.
334 Genetic polymorphisms of cytochrome P450 CYP1A1 (*2A) and microsomal epoxide hydrolase gene, interactions with tobacco-users, and susceptibility to bladder cancer: a study from North India.Arch Toxicol. 2008 Sep;82(9):633-9. doi: 10.1007/s00204-007-0276-4. Epub 2008 Jan 16.
335 Epigenetic repression of regulator of G-protein signaling 2 by ubiquitin-like with PHD and ring-finger domain1 promotes bladder cancer progression.FEBS J. 2015 Jan;282(1):174-82. doi: 10.1111/febs.13116. Epub 2014 Dec 3.
336 Genetic variations in regulator of G-protein signaling (RGS) confer risk of bladder cancer.Cancer. 2013 May 1;119(9):1643-51. doi: 10.1002/cncr.27871. Epub 2013 Mar 25.
337 RGS6 is an essential tumor suppressor that prevents bladder carcinogenesis by promoting p53 activation and DNMT1 downregulation.Oncotarget. 2016 Oct 25;7(43):69159-69172. doi: 10.18632/oncotarget.12473.
338 The suppressive effect of Rho kinase inhibitor, Y-27632, on oncogenic Ras/RhoA induced invasion/migration of human bladder cancer TSGH cells. Chem Biol Interact. 2010 Jan 5;183(1):172-80. doi: 10.1016/j.cbi.2009.10.018.
339 Nuclear Localization of Robo is Associated with Better Survival in Bladder Cancer.Pathol Oncol Res. 2020 Jan;26(1):253-261. doi: 10.1007/s12253-018-0447-z. Epub 2018 Jul 17.
340 miR-204 Negatively Regulates Cell Growth And Metastasis By Targeting ROBO4 In Human Bladder Cancer.Onco Targets Ther. 2019 Oct 16;12:8515-8524. doi: 10.2147/OTT.S205023. eCollection 2019.
341 MicroRNA-335 is downregulated in bladder cancer and inhibits cell growth, migration and invasion via targeting ROCK1.Mol Med Rep. 2016 May;13(5):4379-85. doi: 10.3892/mmr.2016.5055. Epub 2016 Mar 28.
342 Targeted regulation by ROCK2 on bladder carcinoma via Wnt signaling under hypoxia.Cancer Biomark. 2019;24(1):109-116. doi: 10.3233/CBM-181949.
343 Metformin sensitizes human bladder cancer cells to TRAIL-induced apoptosis through mTOR/S6K1-mediated downregulation of c-FLIP.Anticancer Drugs. 2014 Sep;25(8):887-97. doi: 10.1097/CAD.0000000000000116.
344 Somatic FGFR3 Mutations Distinguish a Subgroup of Muscle-Invasive Bladder Cancers with Response to Neoadjuvant Chemotherapy.EBioMedicine. 2018 Sep;35:198-203. doi: 10.1016/j.ebiom.2018.06.011. Epub 2018 Jun 22.
345 Ribonucleotide reductase M2 subunit expression and prognostic value in nasopharyngeal carcinoma.Mol Med Rep. 2015 Jul;12(1):401-9. doi: 10.3892/mmr.2015.3360. Epub 2015 Feb 16.
346 Long-term exposure to cigarette smoke extract induces hypomethylation at the RUNX3 and IGF2-H19 loci in immortalized human urothelial cells. PLoS One. 2013 May 28;8(5):e65513.
347 Bladder-cancer-associated mutations in RXRA activate peroxisome proliferator-activated receptors to drive urothelial proliferation.Elife. 2017 Nov 16;6:e30862. doi: 10.7554/eLife.30862.
348 Expression of miR-149-3p inhibits proliferation, migration, and invasion of bladder cancer by targeting S100A4.Am J Cancer Res. 2017 Nov 1;7(11):2209-2219. eCollection 2017.
349 Calgranulin A (S100A8) Immunostaining: A Future Candidate for Risk Assessment in Patients with Non-Muscle-Invasive Bladder Cancer (NMIBC).Adv Ther. 2018 Nov;35(11):2054-2068. doi: 10.1007/s12325-018-0789-7. Epub 2018 Sep 19.
350 Immunological tumor status may predict response to neoadjuvant chemotherapy and outcome after radical cystectomy in bladder cancer.Sci Rep. 2017 Oct 4;7(1):12682. doi: 10.1038/s41598-017-12892-5.
351 Expression of S100 protein family members in the pathogenesis of bladder tumors.Anticancer Res. 2007 Sep-Oct;27(5A):3051-8.
352 SATB1 and bladder cancer: Is there a functional link?.Urol Oncol. 2018 Mar;36(3):93.e13-93.e21. doi: 10.1016/j.urolonc.2017.10.004. Epub 2017 Oct 25.
353 Inhibition of stearoyl CoA desaturase-1 activity suppresses tumour progression and improves prognosis in human bladder cancer.J Cell Mol Med. 2019 Mar;23(3):2064-2076. doi: 10.1111/jcmm.14114. Epub 2018 Dec 27.
354 Clinical implications in the shift of syndecan-1 expression from the cell membrane to the cytoplasm in bladder cancer.BMC Cancer. 2014 Feb 13;14:86. doi: 10.1186/1471-2407-14-86.
355 5-Aza-2'-deoxycytidine enhances maspin expression and inhibits proliferation, migration, and invasion of the bladder cancer T24 cell line.Cancer Biother Radiopharm. 2013 May;28(4):343-50. doi: 10.1089/cbr.2012.1303. Epub 2013 Apr 9.
356 Expression of RFC/SLC19A1 is associated with tumor type in bladder cancer patients.PLoS One. 2011;6(7):e21820. doi: 10.1371/journal.pone.0021820. Epub 2011 Jul 8.
357 Overexpression of SLC34A2 is an independent prognostic indicator in bladder cancer and its depletion suppresses tumor growth via decreasing c-Myc expression and transcriptional activity.Cell Death Dis. 2017 Feb 2;8(2):e2581. doi: 10.1038/cddis.2017.13.
358 Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer.Br J Cancer. 1999 Oct;81(3):537-41. doi: 10.1038/sj.bjc.6690727.
359 Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014 Apr 1;20(7):1990-2000.
360 SLCO1B1, SLCO2B1, and SLCO1B3 polymorphisms and susceptibility to bladder cancer risk.Cancer Invest. 2014 Jul;32(6):256-61. doi: 10.3109/07357907.2014.907421. Epub 2014 Apr 24.
361 Upregulated SMYD3 promotes bladder cancer progression by targeting BCLAF1 and activating autophagy.Tumour Biol. 2016 Jun;37(6):7371-81. doi: 10.1007/s13277-015-4410-2. Epub 2015 Dec 16.
362 Different Gene Expression and Activity Pattern of Antioxidant Enzymes in Bladder Cancer.Anticancer Res. 2017 Feb;37(2):841-848. doi: 10.21873/anticanres.11387.
363 Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer.J Urol. 2006 May;175(5):1915-20. doi: 10.1016/S0022-5347(05)00919-5.
364 Isorhapontigenin (ISO) inhibits stem cell-like properties and invasion of bladder cancer cell by attenuating CD44 expression.Cell Mol Life Sci. 2020 Jan;77(2):351-363. doi: 10.1007/s00018-019-03185-3. Epub 2019 Jun 20.
365 Comprehensive analyses of DNA repair pathways, smoking and bladder cancer risk in Los Angeles and Shanghai.Int J Cancer. 2014 Jul 15;135(2):335-47. doi: 10.1002/ijc.28693. Epub 2014 Jan 13.
366 HMGB3 promotes growth and migration in colorectal cancer by regulating WNT/-catenin pathway.PLoS One. 2017 Jul 5;12(7):e0179741. doi: 10.1371/journal.pone.0179741. eCollection 2017.
367 Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.Anticancer Res. 2014 Jun;34(6):2937-42.
368 ASC-J9 increases the bladder cancer chemotherapy efficacy via altering the androgen receptor (AR) and NF-B survival signals.J Exp Clin Cancer Res. 2019 Jun 24;38(1):275. doi: 10.1186/s13046-019-1258-0.
369 The KMT1A-GATA3-STAT3 Circuit Is a Novel Self-Renewal Signaling of Human Bladder Cancer Stem Cells.Clin Cancer Res. 2017 Nov 1;23(21):6673-6685. doi: 10.1158/1078-0432.CCR-17-0882. Epub 2017 Aug 1.
370 Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells.Int J Oncol. 2018 Aug;53(2):515-526. doi: 10.3892/ijo.2018.4423. Epub 2018 May 30.
371 CALD1, CNN1, and TAGLN identified as potential prognostic molecular markers of bladder cancer by bioinformatics analysis.Medicine (Baltimore). 2019 Jan;98(2):e13847. doi: 10.1097/MD.0000000000013847.
372 MicroRNA-133b suppresses bladder cancer malignancy by targeting TAGLN2-mediated cell cycle.J Cell Physiol. 2019 Apr;234(4):4910-4923. doi: 10.1002/jcp.27288. Epub 2018 Oct 14.
373 TBK1 Promote Bladder Cancer Cell Proliferation and Migration via Akt Signaling.J Cancer. 2017 Jul 3;8(10):1892-1899. doi: 10.7150/jca.17638. eCollection 2017.
374 Roles of tumor suppressor and telomere maintenance genes in cancer and aging--an epidemiological study.Carcinogenesis. 2005 Oct;26(10):1741-7. doi: 10.1093/carcin/bgi126. Epub 2005 May 19.
375 Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression.Mol Cancer. 2019 Feb 19;18(1):27. doi: 10.1186/s12943-019-0951-0.
376 Dual role of TGFBR3 in bladder cancer.Oncol Rep. 2013 Sep;30(3):1301-8. doi: 10.3892/or.2013.2599. Epub 2013 Jul 8.
377 DR4 mediates the progression, invasion, metastasis and survival of colorectal cancer through the Sp1/NF1 switch axis on genomic locus.Int J Cancer. 2018 Jul 15;143(2):289-297. doi: 10.1002/ijc.31318. Epub 2018 Mar 1.
378 Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis.Mol Med Rep. 2018 Sep;18(3):3403-3410. doi: 10.3892/mmr.2018.9306. Epub 2018 Jul 23.
379 Tankyrase-1 mRNA expression in bladder cancer and paired urine sediment: preliminary experience.Clin Chem Lab Med. 2007;45(7):862-6. doi: 10.1515/CCLM.2007.133.
380 Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-B/IKK pathway-induced apoptosis.PLoS One. 2013;8(1):e50175. doi: 10.1371/journal.pone.0050175. Epub 2013 Jan 24.
381 DNA topoisomerase II and RAD21 cohesin complex component are predicted as potential therapeutic targets in bladder cancer.Oncol Lett. 2019 Jul;18(1):518-528. doi: 10.3892/ol.2019.10365. Epub 2019 May 17.
382 Clinical significance and biological roles of TRIM24 in human bladder carcinoma.Tumour Biol. 2015 Sep;36(9):6849-55. doi: 10.1007/s13277-015-3393-3. Epub 2015 Apr 7.
383 TRIM59 overexpression correlates with poor prognosis and contributes to breast cancer progression through AKT signaling pathway.Mol Carcinog. 2018 Dec;57(12):1792-1802. doi: 10.1002/mc.22897. Epub 2018 Sep 20.
384 TRPM2 mediates histone deacetylase inhibition-induced apoptosis in bladder cancer cells.Cancer Biother Radiopharm. 2015 Mar;30(2):87-93. doi: 10.1089/cbr.2014.1697.
385 TRPM7 is overexpressed in bladder cancer and promotes proliferation, migration, invasion and tumor growth.Oncol Rep. 2017 Oct;38(4):1967-1976. doi: 10.3892/or.2017.5883. Epub 2017 Aug 7.
386 Expression of transient receptor potential vanilloid-1 (TRPV1) in urothelial cancers of human bladder: relation to clinicopathological and molecular parameters.Histopathology. 2010 Nov;57(5):744-52. doi: 10.1111/j.1365-2559.2010.03683.x.
387 TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.PLoS One. 2013 May 31;8(5):e64885. doi: 10.1371/journal.pone.0064885. Print 2013.
388 Mitotic checkpoint genes hBUB1, hBUB1B, hBUB3 and TTK in human bladder cancer, screening for mutations and loss of heterozygosity.Carcinogenesis. 2001 May;22(5):813-5. doi: 10.1093/carcin/22.5.813.
389 Evaluation of the diagnostic accuracy of UBC() Rapid in bladder cancer: a Swedish multicentre study.Scand J Urol. 2017 Aug;51(4):293-300. doi: 10.1080/21681805.2017.1313309. Epub 2017 Apr 19.
390 Knockdown of UBE2T Inhibits Osteosarcoma Cell Proliferation, Migration, and Invasion by Suppressing the PI3K/Akt Signaling Pathway.Oncol Res. 2016;24(5):361-369. doi: 10.3727/096504016X14685034103310.
391 Identification and validation of a novel autophagy gene expression signature for human bladder cancer patients.Tumour Biol. 2017 Apr;39(4):1010428317698360. doi: 10.1177/1010428317698360.
392 CCDC6 and USP7 expression levels suggest novel treatment options in high-grade urothelial bladder cancer.J Exp Clin Cancer Res. 2019 Feb 20;38(1):90. doi: 10.1186/s13046-019-1087-1.
393 Urotensin II receptor determines prognosis of bladder cancer regulating cell motility/invasion.J Exp Clin Cancer Res. 2014 Jun 3;33(1):48. doi: 10.1186/1756-9966-33-48.
394 Silencing circular RNA VANGL1 inhibits progression of bladder cancer by regulating miR-1184/IGFBP2 axis.Cancer Med. 2020 Jan;9(2):700-710. doi: 10.1002/cam4.2650. Epub 2019 Nov 23.
395 Bladder preservation therapy for muscle-invading bladder cancers on Radiation Therapy Oncology Group trials 8802, 8903, 9506, and 9706: vascular endothelial growth factor B overexpression predicts for increased distant metastasis and shorter survival.Oncologist. 2013 Jun;18(6):685-6. doi: 10.1634/theoncologist.2012-0461. Epub 2013 May 31.
396 MicroRNAs as regulators of signal transduction in urological tumors.Clin Chem. 2011 Jul;57(7):954-68. doi: 10.1373/clinchem.2010.157727. Epub 2011 Jun 1.
397 B7-Homolog 4 Promotes Epithelial-Mesenchymal Transition and Invasion of Bladder Cancer Cells via Activation of Nuclear Factor-B.Oncol Res. 2018 Sep 14;26(8):1267-1274. doi: 10.3727/096504018X15172227703244. Epub 2018 Feb 1.
398 Upregulated WDR5 promotes proliferation, self-renewal and chemoresistance in bladder cancer via mediating H3K4 trimethylation.Sci Rep. 2015 Feb 6;5:8293. doi: 10.1038/srep08293.
399 MicroRNA-374a Inhibits Aggressive Tumor Biological Behavior in Bladder Carcinoma by Suppressing Wnt/-Catenin Signaling.Cell Physiol Biochem. 2018;48(2):815-826. doi: 10.1159/000491911. Epub 2018 Jul 20.
400 Significant association of Ku80 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan.Anticancer Res. 2009 Apr;29(4):1275-9.
401 DEP domain containing 1 suppresses apoptosis via inhibition of A20 expression, which activates the nuclear factor B signaling pathway in HepG2 cells.Oncol Lett. 2018 Jul;16(1):949-955. doi: 10.3892/ol.2018.8770. Epub 2018 May 22.
402 Application of targeted radiotherapy/gene therapy to bladder cancer cell lines.Eur Urol. 2005 Feb;47(2):250-6. doi: 10.1016/j.eururo.2004.09.009.
403 CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study.Genet Mol Res. 2016 Apr 26;15(2). doi: 10.4238/gmr.15026298.
404 Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer, stomach cancer, lung cancer and bladder cancer in Chinese population.World J Gastroenterol. 2004 Jul 1;10(13):1961-3. doi: 10.3748/wjg.v10.i13.463.
405 Bladder cancer-associated cancer-testis antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4(+) T cells expressing converged T-cell receptor genes in vitro.Oncoimmunology. 2018 Jan 5;7(4):e1415687. doi: 10.1080/2162402X.2017.1415687. eCollection 2018.
406 XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion.Oncogenesis. 2019 Dec 6;8(12):71. doi: 10.1038/s41389-019-0181-8.
407 Fra-1 controls motility of bladder cancer cells via transcriptional upregulation of the receptor tyrosine kinase AXL.Oncogene. 2012 Mar 22;31(12):1493-503. doi: 10.1038/onc.2011.336. Epub 2011 Aug 8.
408 MiR-1/GOLPH3/Foxo1 Signaling Pathway Regulates Proliferation of Bladder Cancer.Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819886897. doi: 10.1177/1533033819886897.
409 Common Polymorphisms in GSTA1, GSTM1 and GSTT1 Are Associated with Susceptibility to Urinary Bladder Cancer in Individuals from Balkan Endemic Nephropathy Areas of Serbia.Tohoku J Exp Med. 2016 Sep;240(1):25-30. doi: 10.1620/tjem.240.25.
410 Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity.Oncotarget. 2019 Oct 8;10(56):5824-5834. doi: 10.18632/oncotarget.27217. eCollection 2019 Oct 8.
411 Integrin-linked kinase regulates cadherin switch in bladder cancer.Tumour Biol. 2016 Nov;37(11):15185-15191. doi: 10.1007/s13277-016-5354-x. Epub 2016 Sep 28.
412 Altered expression of HER-2 and the mismatch repair genes MLH1 and MSH2 predicts the outcome of T1 high-grade bladder cancer.J Cancer Res Clin Oncol. 2018 Apr;144(4):637-644. doi: 10.1007/s00432-018-2593-9. Epub 2018 Jan 23.
413 Attenuated NER expressions of XPF and XPC associated with smoking are involved in the recurrence of bladder cancer.PLoS One. 2014 Dec 23;9(12):e115224. doi: 10.1371/journal.pone.0115224. eCollection 2014.
414 A Feedback Loop Formed by ATG7/Autophagy, FOXO3a/miR-145 and PD-L1 Regulates Stem-Like Properties and Invasion in Human Bladder Cancer.Cancers (Basel). 2019 Mar 12;11(3):349. doi: 10.3390/cancers11030349.
415 Assessment of CEP55, PLK1 and FOXM1 expression in patients with bladder cancer in comparison with healthy individuals.Cancer Invest. 2018;36(8):407-414. doi: 10.1080/07357907.2018.1514504. Epub 2018 Oct 2.
416 Cationized liposomal keto-mycolic acids isolated from Mycobacterium bovis bacillus Calmette-Gurin induce antitumor immunity in a syngeneic murine bladder cancer model.PLoS One. 2019 Jan 4;14(1):e0209196. doi: 10.1371/journal.pone.0209196. eCollection 2019.
417 Oncogenic miRNA-182-5p targets Smad4 and RECK in human bladder cancer.PLoS One. 2012;7(11):e51056. doi: 10.1371/journal.pone.0051056. Epub 2012 Nov 30.
418 Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63 Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity.Mol Cell Biol. 2018 Oct 15;38(21):e00273-18. doi: 10.1128/MCB.00273-18. Print 2018 Nov 1.
419 Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer.Cancer Res. 2005 Dec 15;65(24):11581-7. doi: 10.1158/0008-5472.CAN-05-1622.
420 miR-203 Suppresses Bladder Cancer Cell Growth and Targets Twist1.Oncol Res. 2018 Sep 14;26(8):1155-1165. doi: 10.3727/096504017X15041934685237. Epub 2017 Sep 6.
421 CircZFR serves as a prognostic marker to promote bladder cancer progression by regulating miR-377/ZEB2 signaling.Biosci Rep. 2019 Dec 20;39(12):BSR20192779. doi: 10.1042/BSR20192779.
422 NRAMP1 and hGPX1 gene polymorphism and response to bacillus Calmette-Gurin therapy for bladder cancer.Eur Urol. 2011 Mar;59(3):430-7. doi: 10.1016/j.eururo.2010.11.031. Epub 2010 Dec 1.
423 Increased BCL2L12 expression predicts the short-term relapse of patients with TaT1 bladder cancer following transurethral resection of bladder tumors.Urol Oncol. 2014 Jan;32(1):39.e29-36. doi: 10.1016/j.urolonc.2013.04.005. Epub 2013 Jun 18.
424 Overexpression of monocarboxylate anion transporter 1 and 4 in T24-induced cancer-associated fibroblasts regulates the progression of bladder cancer cells in a 3D microfluidic device.Cell Cycle. 2015;14(19):3058-65. doi: 10.1080/15384101.2015.1053666. Epub 2015 Jun 30.
425 A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis.Tumour Biol. 2015 Jan;36(1):383-91. doi: 10.1007/s13277-014-2617-2. Epub 2014 Sep 30.
426 MiR-411 suppresses the development of bladder cancer by regulating ZnT1.Onco Targets Ther. 2018 Dec 4;11:8695-8704. doi: 10.2147/OTT.S173750. eCollection 2018.
427 A role for the copper transporter Ctr1 in the synergistic interaction between hyperthermia and cisplatin treatment.Int J Hyperthermia. 2013 Sep;29(6):528-38. doi: 10.3109/02656736.2013.790563. Epub 2013 Jul 23.
428 Fluid intake, genetic variants of UDP-glucuronosyltransferases, and bladder cancer risk.Br J Cancer. 2013 Jun 11;108(11):2372-80. doi: 10.1038/bjc.2013.190. Epub 2013 Apr 30.
429 Zinc transporter genes and urological cancers: integrated analysis suggests a role for ZIP11 in bladder cancer.Tumour Biol. 2015 Sep;36(10):7431-7. doi: 10.1007/s13277-015-3459-2. Epub 2015 Apr 23.
430 SLC39A2 and FSIP1 polymorphisms as potential modifiers of arsenic-related bladder cancer. Hum Genet. 2012 Mar;131(3):453-61. doi: 10.1007/s00439-011-1090-x. Epub 2011 Sep 25.
431 Vasitis nodosa and related lesions: a modern immunohistochemical staining profile with special emphasis on novel diagnostic dilemmas.Hum Pathol. 2018 Mar;73:164-170. doi: 10.1016/j.humpath.2017.12.001. Epub 2017 Dec 11.
432 Evaluation of NMP22 in bladder cancer patients sensitive to environmental toxins.Adv Clin Exp Med. 2017 Oct;26(7):1069-1075. doi: 10.17219/acem/63156.
433 CYP27A1 inhibits bladder cancer cells proliferation by regulating cholesterol homeostasis.Cell Cycle. 2019 Jan;18(1):34-45. doi: 10.1080/15384101.2018.1558868. Epub 2018 Dec 30.
434 Pro-GA, a Novel Inhibitor of -Glutamylcyclotransferase, Suppresses Human Bladder Cancer Cell Growth.Anticancer Res. 2019 Apr;39(4):1893-1898. doi: 10.21873/anticanres.13297.
435 Proteomic analysis of bladder cancer by iTRAQ after Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene treatment.Biol Chem. 2013 Oct;394(10):1333-42. doi: 10.1515/hsz-2013-0201.
436 Metallothionein-1 and -2 expression in cadmium- or arsenic-derived human malignant urothelial cells and tumor heterotransplants and as a prognostic indicator in human bladder cancer.Toxicol Sci. 2006 Jun;91(2):467-75. doi: 10.1093/toxsci/kfj174. Epub 2006 Mar 24.
437 Variation in genes encoding the neuroactive steroid synthetic enzymes 5-reductase type 1 and 3-reductase type 2 is associated with alcohol dependence.Alcohol Clin Exp Res. 2011 May;35(5):946-52. doi: 10.1111/j.1530-0277.2010.01425.x. Epub 2011 Feb 15.
438 Methionine Adenosyltransferase 1a (MAT1A) Enhances Cell Survival During Chemotherapy Treatment and is Associated with Drug Resistance in Bladder Cancer PDX Mice.Int J Mol Sci. 2019 Oct 9;20(20):4983. doi: 10.3390/ijms20204983.
439 Uridine Cytidine Kinase 2 as a Potential Biomarker for Treatment with RX-3117 in Pancreatic Cancer.Anticancer Res. 2019 Jul;39(7):3609-3614. doi: 10.21873/anticanres.13508.
440 Ecto-5'-nucleotidase/CD73 contributes to the radiosensitivity of T24 human bladder cancer cell line.J Cancer Res Clin Oncol. 2018 Mar;144(3):469-482. doi: 10.1007/s00432-017-2567-3. Epub 2018 Jan 5.
441 Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer.Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Mar;1864(3):413-421. doi: 10.1016/j.bbalip.2018.06.005. Epub 2018 Jun 5.
442 Alcohol dehydrogenase type 3 (ADH3) and the risk of bladder cancer.Eur Urol. 2001 Nov;40(5):509-14. doi: 10.1159/000049827.
443 The Diagnostic Significance of Serum Alcohol Dehydrogenase Isoenzymes and Aldehyde Dehydrogenase Activity in Urinary Bladder Cancer Patients.Anticancer Res. 2017 Jul;37(7):3537-3541. doi: 10.21873/anticanres.11722.
444 Carboplatin-gemcitabine combination chemotherapy upregulates AKR1B10 expression in bladder cancer.Int J Clin Oncol. 2013 Feb;18(1):177-82. doi: 10.1007/s10147-011-0363-7. Epub 2011 Dec 27.
445 Aldo-keto reductase 1C1 induced by interleukin-1 mediates the invasive potential and drug resistance of metastatic bladder cancer cells.Sci Rep. 2016 Oct 4;6:34625. doi: 10.1038/srep34625.
446 A risk score staging system based on the expression of seven genes predicts the outcome of bladder cancer.Oncol Lett. 2018 Aug;16(2):2091-2096. doi: 10.3892/ol.2018.8904. Epub 2018 Jun 5.
447 Polymorphisms of Arsenic (+3 Oxidation State) Methyltransferase and Arsenic Methylation Capacity Affect the Risk of Bladder Cancer.Toxicol Sci. 2018 Jul 1;164(1):328-338. doi: 10.1093/toxsci/kfy087.
448 Functional characterization of 9 CYP2A13 allelic variants by assessment of nicotine C-oxidation and coumarin 7-hydroxylation.Drug Metab Pharmacokinet. 2018 Feb;33(1):82-89. doi: 10.1016/j.dmpk.2017.11.004. Epub 2017 Nov 22.
449 Possible relationship between the risk of Japanese bladder cancer cases and the CYP4B1 genotype.Jpn J Clin Oncol. 2008 Sep;38(9):634-40. doi: 10.1093/jjco/hyn081. Epub 2008 Aug 19.
450 LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression.Biosci Rep. 2019 Apr 12;39(4):BSR20182372. doi: 10.1042/BSR20182372. Print 2019 Apr 30.
451 Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature.Mutat Res Genet Toxicol Environ Mutagen. 2018 Jul;831:1-12. doi: 10.1016/j.mrgentox.2018.04.005. Epub 2018 Apr 24.
452 HSD3B and gene-gene interactions in a pathway-based analysis of genetic susceptibility to bladder cancer.PLoS One. 2012;7(12):e51301. doi: 10.1371/journal.pone.0051301. Epub 2012 Dec 19.
453 MicroRNA-940 Targets INPP4A or GSK3 and Activates the Wnt/-Catenin Pathway to Regulate the Malignant Behavior of Bladder Cancer Cells.Oncol Res. 2018 Jan 19;26(1):145-155. doi: 10.3727/096504017X14902261600566. Epub 2017 Mar 23.
454 High expression of enhancer RNA MARC1 or its activation by DHT is associated with the malignant behavior in bladder cancer.Exp Cell Res. 2018 Sep 15;370(2):303-311. doi: 10.1016/j.yexcr.2018.06.032. Epub 2018 Jun 28.
455 Prognostic significance of HALP (hemoglobin, albumin, lymphocyte and platelet) in patients with bladder cancer after radical cystectomy.Sci Rep. 2018 Jan 15;8(1):794. doi: 10.1038/s41598-018-19146-y.
456 Clinical performance and utility of a NNMT-based urine test for bladder cancer.Int J Biol Markers. 2018 Jan;33(1):94-101. doi: 10.5301/ijbm.5000311.
457 Identification of an enhancer region within the TP63/LEPREL1 locus containing genetic variants associated with bladder cancer risk.Cell Oncol (Dordr). 2018 Oct;41(5):555-568. doi: 10.1007/s13402-018-0393-5. Epub 2018 Jun 28.
458 Exploring the role of paraoxonase-2 in bladder cancer: analyses performed on tissue samples, urines and cell cultures.Oncotarget. 2017 Apr 25;8(17):28785-28795. doi: 10.18632/oncotarget.15674.
459 Evaluation of urinary CA19-9 levels in bladder cancer patients classified according to the combinations of Lewis and Secretor blood group genotypes.Int J Urol. 2007 Sep;14(9):795-9. doi: 10.1111/j.1442-2042.2007.01840.x.
460 Occupational exposures and genetic susceptibility to urinary tract cancers: a systematic review and meta-analysis.Eur J Cancer Prev. 2018 Sep;27(5):468-476. doi: 10.1097/CEJ.0000000000000364.
461 Genome-wide association study identifies multiple loci associated with bladder cancer risk.Hum Mol Genet. 2014 Mar 1;23(5):1387-98. doi: 10.1093/hmg/ddt519. Epub 2013 Oct 24.
462 Suppression of AhR signaling pathway is associated with the down-regulation of UDP-glucuronosyltransferases during BBN-induced urinary bladder carcinogenesis in mice.J Biochem. 2010 Mar;147(3):353-60. doi: 10.1093/jb/mvp169. Epub 2009 Oct 29.
463 The association between UGT1A7 polymorphism and cancer risk: a meta-analysis.Cancer Epidemiol. 2012 Aug;36(4):e201-6. doi: 10.1016/j.canep.2012.02.004. Epub 2012 Mar 7.
464 Association of genotypes of carcinogen-metabolizing enzymes and smoking status with bladder cancer in a Japanese population.Environ Health Prev Med. 2013 Mar;18(2):136-42. doi: 10.1007/s12199-012-0302-x. Epub 2012 Sep 9.
465 The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers.J Clin Lab Anal. 2020 Jan;34(1):e23049. doi: 10.1002/jcla.23049. Epub 2019 Sep 25.
466 Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family.Cancer Res. 2013 Jan 15;73(2):736-44. doi: 10.1158/0008-5472.CAN-12-2601. Epub 2012 Nov 7.
467 Whole-genome sequencing identifies ADGRG6 enhancer mutations and FRS2 duplications as angiogenesis-related drivers in bladder cancer.Nat Commun. 2019 Feb 12;10(1):720. doi: 10.1038/s41467-019-08576-5.
468 The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-B/MYC signaling network.Oncogene. 2019 May;38(19):3667-3680. doi: 10.1038/s41388-019-0683-z. Epub 2019 Jan 18.
469 Adenylate kinase 4 promotes bladder cancer cell proliferation and invasion.Clin Exp Med. 2019 Nov;19(4):525-534. doi: 10.1007/s10238-019-00576-5. Epub 2019 Aug 28.
470 Paclitaxel-based second-line therapy for patients with advanced chemotherapy-resistant bladder carcinoma (M1): a clinical Phase II study.Cancer. 1997 Aug 1;80(3):465-70. doi: 10.1002/(sici)1097-0142(19970801)80:3<465::aid-cncr14>3.0.co;2-v.
471 ARPC4 promotes bladder cancer cell invasion and is associated with lymph node metastasis.J Cell Biochem. 2020 Jan;121(1):231-243. doi: 10.1002/jcb.29136. Epub 2019 Jun 12.
472 Oxidative stress and LINE-1 reactivation in bladder cancer are epigenetically linked through active chromatin formation.Free Radic Biol Med. 2019 Apr;134:419-428. doi: 10.1016/j.freeradbiomed.2019.01.031. Epub 2019 Jan 29.
473 Suppression of CD81 promotes bladder cancer cell invasion through increased matrix metalloproteinase expression via extracellular signal-regulated kinase phosphorylation.Investig Clin Urol. 2019 Sep;60(5):396-404. doi: 10.4111/icu.2019.60.5.396. Epub 2019 Jul 17.
474 Dynamic m(6)A mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis.Oncogene. 2019 Jun;38(24):4755-4772. doi: 10.1038/s41388-019-0755-0. Epub 2019 Feb 22.
475 Analysis of Gene Expression in Bladder Cancer: Possible Involvement of Mitosis and Complement and Coagulation Cascades Signaling Pathway.J Comput Biol. 2020 Jun;27(6):987-998. doi: 10.1089/cmb.2019.0237. Epub 2019 Sep 23.
476 Characterization of mRNA Expression and Endogenous RNA Profiles in Bladder Cancer Based on The Cancer Genome Atlas (TCGA) Database.Med Sci Monit. 2019 Apr 25;25:3041-3060. doi: 10.12659/MSM.915487.
477 Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder.Nat Genet. 2011 Aug 7;43(9):875-8. doi: 10.1038/ng.907.
478 Loss of DUSP2 predicts a poor prognosis in patients with bladder cancer.Hum Pathol. 2019 Mar;85:152-161. doi: 10.1016/j.humpath.2018.11.007. Epub 2018 Nov 17.
479 Extracellular matrix protein 1 (ECM1) is associated with carcinogenesis potential of human bladder cancer.Onco Targets Ther. 2019 Feb 20;12:1423-1432. doi: 10.2147/OTT.S191321. eCollection 2019.
480 The ERH gene regulates migration and invasion in 5637 and T24 bladder cancer cells.BMC Cancer. 2019 Mar 12;19(1):225. doi: 10.1186/s12885-019-5423-9.
481 Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation.Nat Genet. 2013 Dec;45(12):1459-63. doi: 10.1038/ng.2798. Epub 2013 Oct 13.
482 ETV5 links the FGFR3 and Hippo signalling pathways in bladder cancer.Sci Rep. 2019 Apr 5;9(1):5740. doi: 10.1038/s41598-018-36456-3.
483 FGF9 inhibition by a novel binding peptide has efficacy in gastric and bladder cancer per se and reverses resistance to cisplatin.Pharmacol Res. 2020 Feb;152:104575. doi: 10.1016/j.phrs.2019.104575. Epub 2019 Dec 2.
484 Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer.Oncotarget. 2016 Mar 8;7(10):11412-23. doi: 10.18632/oncotarget.7194.
485 Hypermethylated in cancer 1 (HIC1) suppresses bladder cancer progression by targeting yes-associated protein (YAP) pathway.J Cell Biochem. 2019 Apr;120(4):6471-6481. doi: 10.1002/jcb.27938. Epub 2018 Nov 11.
486 Development and Initial Testing of a Modified UroVysion-Based Fluorescence In Situ Hybridization Score for Prediction of Progression in Bladder Cancer.Am J Clin Pathol. 2020 Jan 2;153(2):274-284. doi: 10.1093/ajcp/aqz165.
487 Long Non-coding RNA DLEU1 Promotes Cell Proliferation, Invasion, and Confers Cisplatin Resistance in Bladder Cancer by Regulating the miR-99b/HS3ST3B1 Axis.Front Genet. 2019 Mar 29;10:280. doi: 10.3389/fgene.2019.00280. eCollection 2019.
488 Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer.PLoS One. 2015 Sep 2;10(9):e0137003. doi: 10.1371/journal.pone.0137003. eCollection 2015.
489 ISYNA1 is overexpressed in bladder carcinoma and regulates cell proliferation and apoptosis.Biochem Biophys Res Commun. 2019 Nov 5;519(2):246-252. doi: 10.1016/j.bbrc.2019.08.129. Epub 2019 Sep 5.
490 Keratin 6 expression correlates to areas of squamous differentiation in multiple independent isolates of As(+3)-induced bladder cancer.J Appl Toxicol. 2010 Jul;30(5):416-30. doi: 10.1002/jat.1513.
491 A six-gene prognostic model predicts overall survival in bladder cancer patients.Cancer Cell Int. 2019 Sep 5;19:229. doi: 10.1186/s12935-019-0950-7. eCollection 2019.
492 MAGE-A9 mRNA and protein expression in bladder cancer.Int J Cancer. 2007 May 15;120(10):2170-7. doi: 10.1002/ijc.22282.
493 Mediator Complex Subunit MED1 Protein Expression Is Decreased during Bladder Cancer Progression.Front Med (Lausanne). 2017 Mar 17;4:30. doi: 10.3389/fmed.2017.00030. eCollection 2017.
494 Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM.Cancer Lett. 2019 May 1;449:31-44. doi: 10.1016/j.canlet.2019.01.041. Epub 2019 Feb 10.
495 Molecular markers and bladder carcinoma: Schistosomal and non-schistosomal.Clin Biochem. 2011 Feb;44(2-3):237-44. doi: 10.1016/j.clinbiochem.2010.09.028. Epub 2010 Oct 8.
496 Expression and Role of Methylenetetrahydrofolate Dehydrogenase 1 Like (MTHFD1L) in Bladder Cancer.Transl Oncol. 2019 Nov;12(11):1416-1424. doi: 10.1016/j.tranon.2019.07.012. Epub 2019 Aug 8.
497 Circ_0006332 promotes growth and progression of bladder cancer by modulating MYBL2 expression via miR-143.Aging (Albany NY). 2019 Nov 22;11(22):10626-10643. doi: 10.18632/aging.102481. Epub 2019 Nov 22.
498 Identification and validation of an 18-gene signature highly-predictive of bladder cancer metastasis.Sci Rep. 2018 Jan 10;8(1):374. doi: 10.1038/s41598-017-18773-1.
499 Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation.Cancer Lett. 2020 Mar 31;473:118-129. doi: 10.1016/j.canlet.2019.12.018. Epub 2019 Dec 13.
500 High NRBP1 expression promotes proliferation and correlates with poor prognosis in bladder cancer.J Cancer. 2019 Jul 10;10(18):4270-4277. doi: 10.7150/jca.32656. eCollection 2019.
501 LINC00612 enhances the proliferation and invasion ability of bladder cancer cells as ceRNA by sponging miR-590 to elevate expression of PHF14.J Exp Clin Cancer Res. 2019 Apr 2;38(1):143. doi: 10.1186/s13046-019-1149-4.
502 PLC promotes urinary bladder cancer cells proliferation through STAT3/LDHA pathwaymediated glycolysis.Oncol Rep. 2019 May;41(5):2844-2854. doi: 10.3892/or.2019.7056. Epub 2019 Mar 13.
503 NNT-AS1 enhances bladder cancer cell growth by targeting miR-1301-3p/PODXL axis and activating Wnt pathway.Neurourol Urodyn. 2020 Feb;39(2):547-557. doi: 10.1002/nau.24238. Epub 2019 Nov 29.
504 Prothymosin- enhances phosphatase and tensin homolog expression and binds with tripartite motif-containing protein 21 to regulate Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 signaling in human bladder cancer.Cancer Sci. 2019 Apr;110(4):1208-1219. doi: 10.1111/cas.13963. Epub 2019 Mar 5.
505 RAB14 activates MAPK signaling to promote bladder tumorigenesis.Carcinogenesis. 2019 Nov 25;40(11):1341-1351. doi: 10.1093/carcin/bgz039.
506 Long Noncoding RNA MNX1 antisense RNA 1 Exerts Oncogenic Functions in Bladder Cancer by Regulating miR-218-5p/RAB1A Axis.J Pharmacol Exp Ther. 2020 Mar;372(3):237-247. doi: 10.1124/jpet.119.262949. Epub 2019 Dec 16.
507 RAB38 promotes bladder cancer growth by promoting cell proliferation and motility.World J Urol. 2019 Sep;37(9):1889-1897. doi: 10.1007/s00345-018-2596-9. Epub 2018 Dec 10.
508 RhoBTB2 gene in breast cancer is silenced by promoter methylation.Int J Mol Med. 2014 Mar;33(3):722-8. doi: 10.3892/ijmm.2013.1593. Epub 2013 Dec 18.
509 Overexpression of ribonuclease inhibitor induces autophagy in human colorectal cancer cells via the Akt/mTOR/ULK1 pathway.Mol Med Rep. 2019 May;19(5):3519-3526. doi: 10.3892/mmr.2019.10030. Epub 2019 Mar 14.
510 Long noncoding RNA LINC00319 regulates ROMO1 expression and promotes bladder cancer progression via miR-4492/ROMO1 axis.J Cell Physiol. 2020 Apr;235(4):3768-3775. doi: 10.1002/jcp.29271. Epub 2019 Oct 14.
511 MiR-506 inhibits cell proliferation, invasion, migration and epithelial-to-mesenchymal transition through targeting RWDD4 in human bladder cancer.Oncol Lett. 2019 Jan;17(1):73-78. doi: 10.3892/ol.2018.9594. Epub 2018 Oct 18.
512 p85 Inactivates MMP-2 and Suppresses Bladder Cancer Invasion by Inhibiting MMP-14 Transcription and TIMP-2 Degradation.Neoplasia. 2019 Sep;21(9):908-920. doi: 10.1016/j.neo.2019.07.007. Epub 2019 Aug 8.
513 Serine/threonine kinase 32C is overexpressed in bladder cancer and contributes to tumor progression.Cancer Biol Ther. 2019;20(3):307-320. doi: 10.1080/15384047.2018.1529098. Epub 2018 Oct 25.
514 Increased expression levels of Syntaxin 1A and Synaptobrevin 2/Vesicle-Associated Membrane Protein-2 are associated with the progression of bladder cancer.Genet Mol Biol. 2019 Jan-Mar;42(1):40-47. doi: 10.1590/1678-4685-GMB-2017-0339. Epub 2019 Jan 21.
515 Thyrotroph embryonic factor is downregulated in bladder cancer and suppresses proliferation and tumorigenesis via the AKT/FOXOs signalling pathway.Cell Prolif. 2019 Mar;52(2):e12560. doi: 10.1111/cpr.12560. Epub 2018 Dec 4.
516 Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors.Cancer Res. 2006 Nov 1;66(21):10621-9. doi: 10.1158/0008-5472.CAN-06-1687.
517 Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance.Oncotarget. 2018 Jan 13;9(17):13231-13243. doi: 10.18632/oncotarget.24229. eCollection 2018 Mar 2.
518 Rewiring E2F1 with classical NHEJ via APLF suppression promotes bladder cancer invasiveness.J Exp Clin Cancer Res. 2019 Jul 8;38(1):292. doi: 10.1186/s13046-019-1286-9.
519 A novel cellular senescence gene, SENEX, is involved in peripheral regulatory T cells accumulation in aged urinary bladder cancer.PLoS One. 2014 Feb 5;9(2):e87774. doi: 10.1371/journal.pone.0087774. eCollection 2014.
520 III-tubulin overexpression is linked to aggressive tumor features and genetic instability in urinary bladder cancer.Hum Pathol. 2017 Mar;61:210-220. doi: 10.1016/j.humpath.2016.11.005. Epub 2016 Dec 24.
521 BZW2 gene knockdown induces cell growth inhibition, G1 arrest and apoptosis in muscle-invasive bladder cancers: A microarray pathway analysis.J Cell Mol Med. 2019 Jun;23(6):3905-3915. doi: 10.1111/jcmm.14266. Epub 2019 Apr 1.
522 Norcantharidin inhibits the DDR of bladder cancer stem-like cells through cdc6 degradation.Onco Targets Ther. 2019 Jun 7;12:4403-4413. doi: 10.2147/OTT.S209907. eCollection 2019.
523 Dual strands of the miR-223 duplex (miR-223-5p and miR-223-3p) inhibit cancer cell aggressiveness: targeted genes are involved in bladder cancer pathogenesis.J Hum Genet. 2018 May;63(5):657-668. doi: 10.1038/s10038-018-0437-8. Epub 2018 Mar 14.
524 Bioinformatics Analysis Identified Key Molecular Changes in Bladder Cancer Development and Recurrence.Biomed Res Int. 2019 Nov 16;2019:3917982. doi: 10.1155/2019/3917982. eCollection 2019.
525 Companied P16 genetic and protein status together providing useful information on the clinical outcome of urinary bladder cancer.Medicine (Baltimore). 2018 Apr;97(15):e0353. doi: 10.1097/MD.0000000000010353.
526 SPIRE - combining SGI-110 with cisplatin and gemcitabine chemotherapy for solid malignancies including bladder cancer: study protocol for a phase Ib/randomised IIa open label clinical trial.Trials. 2018 Apr 3;19(1):216. doi: 10.1186/s13063-018-2586-7.
527 CIZ1 knockdown suppresses the proliferation of bladder cancer cells by inducing apoptosis.Gene. 2019 Nov 30;719:143946. doi: 10.1016/j.gene.2019.143946. Epub 2019 Jun 25.
528 Diagnostic and prognostic role of urinary collagens in primary human bladder cancer.Cancer Sci. 2017 Nov;108(11):2221-2228. doi: 10.1111/cas.13384. Epub 2017 Sep 15.
529 A DDX31/Mutant-p53/EGFR Axis Promotes Multistep Progression of Muscle-Invasive Bladder Cancer.Cancer Res. 2018 May 1;78(9):2233-2247. doi: 10.1158/0008-5472.CAN-17-2528. Epub 2018 Feb 13.
530 METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner.Mol Cancer. 2019 Jun 22;18(1):110. doi: 10.1186/s12943-019-1036-9.
531 Upregulation of NPL4 promotes bladder cancer cell proliferation by inhibiting DXO destabilization of cyclin D1 mRNA.Cancer Cell Int. 2019 May 30;19:149. doi: 10.1186/s12935-019-0874-2. eCollection 2019.
532 eIF3a is over-expressed in urinary bladder cancer and influences its phenotype independent of translation initiation.Cell Oncol (Dordr). 2014 Aug;37(4):253-67. doi: 10.1007/s13402-014-0181-9. Epub 2014 Jul 29.
533 E74 like ETS transcription factor 3 (ELF3) is a negative regulator of epithelial- mesenchymal transition in bladder carcinoma.Cancer Biomark. 2019;25(2):223-232. doi: 10.3233/CBM-190013.
534 Exosomal MicroRNA-9-3p Secreted from BMSCs Downregulates ESM1 to Suppress the Development of Bladder Cancer.Mol Ther Nucleic Acids. 2019 Dec 6;18:787-800. doi: 10.1016/j.omtn.2019.09.023. Epub 2019 Oct 1.
535 Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis.Mol Cancer. 2019 May 17;18(1):95. doi: 10.1186/s12943-019-1025-z.
536 Increased risk of cancer in patients with fumarate hydratase germline mutation.J Med Genet. 2006 Jun;43(6):523-6. doi: 10.1136/jmg.2005.036400. Epub 2005 Sep 9.
537 GPX2 promotes development of bladder cancer with squamous cell differentiation through the control of apoptosis.Oncotarget. 2018 Mar 23;9(22):15847-15859. doi: 10.18632/oncotarget.24627. eCollection 2018 Mar 23.
538 The Expression and Prognostic Impact of Immune Cytolytic Activity-Related Markers in Human Malignancies: A Comprehensive Meta-analysis.Front Oncol. 2018 Feb 21;8:27. doi: 10.3389/fonc.2018.00027. eCollection 2018.
539 Homeobox A10 promotes the proliferation and invasion of bladder cancer cells via regulation of matrix metalloproteinase-3.Oncol Lett. 2019 Jul;18(1):49-56. doi: 10.3892/ol.2019.10312. Epub 2019 May 3.
540 HOXB2 is a Putative Tumour Promotor in Human Bladder Cancer.Anticancer Res. 2019 Dec;39(12):6915-6921. doi: 10.21873/anticanres.13912.
541 HSDL2 Promotes Bladder Cancer Growth In Vitro and In Vivo.Int J Med Sci. 2019 May 7;16(5):654-659. doi: 10.7150/ijms.31288. eCollection 2019.
542 The roles and mechanism of IFIT5 in bladder cancer epithelial-mesenchymal transition and progression.Cell Death Dis. 2019 Jun 4;10(6):437. doi: 10.1038/s41419-019-1669-z.
543 The histone demethylase JMJD2B plays an essential role in human carcinogenesis through positive regulation of cyclin-dependent kinase 6.Cancer Prev Res (Phila). 2011 Dec;4(12):2051-61. doi: 10.1158/1940-6207.CAPR-11-0290. Epub 2011 Sep 19.
544 Kinesin family member 3A stimulates cell proliferation, migration, and invasion of bladder cancer cells invitro and invivo.FEBS Open Bio. 2021 May;11(5):1487-1496. doi: 10.1002/2211-5463.12768. Epub 2021 May 2.
545 Kinesin family member C1 accelerates bladder cancer cell proliferation and induces epithelial-mesenchymal transition via Akt/GSK3 signaling.Cancer Sci. 2019 Sep;110(9):2822-2833. doi: 10.1111/cas.14126. Epub 2019 Jul 23.
546 CircPTPRA acts as a tumor suppressor in bladder cancer by sponging miR-636 and upregulating KLF9.Aging (Albany NY). 2019 Dec 10;11(23):11314-11328. doi: 10.18632/aging.102530. Epub 2019 Dec 10.
547 Cytokeratin 15 marks basal epithelia in developing ureters and is upregulated in a subset of urothelial cell carcinomas.PLoS One. 2013 Nov 18;8(11):e81167. doi: 10.1371/journal.pone.0081167. eCollection 2013.
548 Enhanced metastatic potential in the MB49 urothelial carcinoma model.Sci Rep. 2019 May 15;9(1):7425. doi: 10.1038/s41598-019-43641-5.
549 Adaptation to Extreme Environments in an Admixed Human Population from the Atacama Desert.Genome Biol Evol. 2019 Sep 1;11(9):2468-2479. doi: 10.1093/gbe/evz172.
550 LHPP suppresses bladder cancer cell proliferation and growth via inactivating AKT/p65 signaling pathway.Biosci Rep. 2019 Jul 30;39(7):BSR20182270. doi: 10.1042/BSR20182270. Print 2019 Jul 31.
551 ciRs-6 upregulates March1 to suppress bladder cancer growth by sponging miR-653.Aging (Albany NY). 2019 Dec 10;11(23):11202-11223. doi: 10.18632/aging.102525. Epub 2019 Dec 10.
552 MEX3C regulates lipid metabolism to promote bladder tumorigenesis through JNK pathway.Onco Targets Ther. 2019 May 1;12:3285-3294. doi: 10.2147/OTT.S199667. eCollection 2019.
553 miR?2?p enhances multichemoresistance by targeting NET1 in bladder cancer cells.Oncol Rep. 2018 Jun;39(6):2731-2740. doi: 10.3892/or.2018.6355. Epub 2018 Apr 4.
554 A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging.Nat Commun. 2019 Oct 24;10(1):4861. doi: 10.1038/s41467-019-12848-5.
555 Antitumor effects of MutT homolog 1 inhibitors in human bladder cancer cells.Biosci Biotechnol Biochem. 2019 Dec;83(12):2265-2271. doi: 10.1080/09168451.2019.1648207. Epub 2019 Jul 31.
556 NUDT21 inhibits bladder cancer progression through ANXA2 and LIMK2 by alternative polyadenylation.Theranostics. 2019 Sep 23;9(24):7156-7167. doi: 10.7150/thno.36030. eCollection 2019.
557 Peptidyl Arginine Deiminase, Type II (PADI2) Is Involved in Urothelial Bladder Cancer.Pathol Oncol Res. 2020 Apr;26(2):1279-1285. doi: 10.1007/s12253-019-00687-0. Epub 2019 Jul 2.
558 KCNQ1OT1 aggravates cell proliferation and migration in bladder cancer through modulating miR-145-5p/PCBP2 axis.Cancer Cell Int. 2019 Dec 3;19:325. doi: 10.1186/s12935-019-1039-z. eCollection 2019.
559 PCMT1 is an unfavorable predictor and functions as an oncogene in bladder cancer.IUBMB Life. 2018 Apr;70(4):291-299. doi: 10.1002/iub.1717. Epub 2018 Mar 8.
560 Importance of PNO1 for growth and survival of urinary bladder carcinoma: Role in core-regulatory circuitry.J Cell Mol Med. 2020 Jan;24(2):1504-1515. doi: 10.1111/jcmm.14835. Epub 2019 Dec 4.
561 A polymorphism of the POLG2 gene is genetically associated with the invasiveness of urinary bladder cancer in Japanese males.J Hum Genet. 2011 Aug;56(8):572-6. doi: 10.1038/jhg.2011.60. Epub 2011 Jul 7.
562 MKAD-21 Suppresses the Oncogenic Activity of the miR-21/PPP2R2A/ERK Molecular Network in Bladder Cancer.Mol Cancer Ther. 2018 Jul;17(7):1430-1440. doi: 10.1158/1535-7163.MCT-17-1049. Epub 2018 Apr 27.
563 Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer.Cancer Res. 2007 Apr 1;67(7):3276-85. doi: 10.1158/0008-5472.CAN-06-3748.
564 Identification of Hub Genes Associated With Progression and Prognosis in Patients With Bladder Cancer.Front Genet. 2019 May 7;10:408. doi: 10.3389/fgene.2019.00408. eCollection 2019.
565 RASSF6 Is Downregulated In Human Bladder Cancers And Regulates Doxorubicin Sensitivity And Mitochondrial Membrane Potential Via The Hippo Signaling Pathway.Onco Targets Ther. 2019 Nov 5;12:9189-9200. doi: 10.2147/OTT.S217041. eCollection 2019.
566 Down-regulated RBM5 inhibits bladder cancer cell apoptosis by initiating an miR-432-5p/-catenin feedback loop.FASEB J. 2019 Oct;33(10):10973-10985. doi: 10.1096/fj.201900537R. Epub 2019 Jul 18.
567 Regulator of G protein signaling 20 promotes proliferation and migration in bladder cancer via NF-B signaling.Biomed Pharmacother. 2019 Sep;117:109112. doi: 10.1016/j.biopha.2019.109112. Epub 2019 Jun 15.
568 Adseverin modulates morphology and invasive function of MCF7 cells.Biochim Biophys Acta Mol Basis Dis. 2019 Oct 1;1865(10):2716-2725. doi: 10.1016/j.bbadis.2019.07.015. Epub 2019 Jul 29.
569 SEC11A Expression Is Associated with Basal-Like Bladder Cancer and Predicts Patient Survival.Pathobiology. 2019;86(4):208-216. doi: 10.1159/000497206. Epub 2019 Jun 4.
570 CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis.Cancer Sci. 2018 May;109(5):1723-1730. doi: 10.1111/cas.13565. Epub 2018 Apr 14.
571 Knockdown of SLC35F2 Inhibits the Proliferation and Metastasis of Bladder Cancer Cells.Onco Targets Ther. 2019 Dec 10;12:10771-10786. doi: 10.2147/OTT.S229332. eCollection 2019.
572 The role of SOX18 in bladder cancer and its underlying mechanism in mediating cellular functions.Life Sci. 2019 Sep 1;232:116614. doi: 10.1016/j.lfs.2019.116614. Epub 2019 Jun 28.
573 MiRNA-616 aggravates the progression of bladder cancer by regulating cell proliferation, migration and apoptosis through downregulating SOX7.Eur Rev Med Pharmacol Sci. 2019 Nov;23(21):9304-9312. doi: 10.26355/eurrev_201911_19423.
574 STIP1 Tissue Expression Is Associated with Survival in Chemotherapy-Treated Bladder Cancer Patients.Pathol Oncol Res. 2020 Apr;26(2):1243-1249. doi: 10.1007/s12253-019-00689-y. Epub 2019 Jun 27.
575 Repression of transcription factor AP-2 alpha by PPAR reveals a novel transcriptional circuit in basal-squamous bladder cancer.Oncogenesis. 2019 Nov 26;8(12):69. doi: 10.1038/s41389-019-0178-3.
576 Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis.EMBO Mol Med. 2020 Jan 9;12(1):e10880. doi: 10.15252/emmm.201910880. Epub 2019 Nov 11.
577 The Pathological Significance and Prognostic Roles of Thrombospondin-1, and -2, and 4N1K-peptide in Bladder Cancer.Anticancer Res. 2019 May;39(5):2317-2324. doi: 10.21873/anticanres.13348.
578 Overexpression of thymosin 10 correlates with disease progression and poor prognosis in bladder cancer.Exp Ther Med. 2019 Nov;18(5):3759-3766. doi: 10.3892/etm.2019.8006. Epub 2019 Sep 13.
579 The epigenetically regulated effects of Wnt antagonists on the expression of genes in the apoptosis pathway in human bladder cancer cell line (T24).DNA Cell Biol. 2014 Jul;33(7):408-17. doi: 10.1089/dna.2013.2285. Epub 2014 Mar 25.
580 Mass spectrometric detection combined with bioinformatic analysis identified possible protein markers and key pathways associated with bladder cancer.Gene. 2017 Aug 30;626:407-413. doi: 10.1016/j.gene.2017.05.054. Epub 2017 May 25.
581 Increased expression of -actinin-4 is associated with unfavorable pathological features and invasiveness of bladder cancer.Oncol Rep. 2013 Sep;30(3):1073-80. doi: 10.3892/or.2013.2577. Epub 2013 Jul 1.
582 ADAM15 Is Functionally Associated with the Metastatic Progression of Human Bladder Cancer.PLoS One. 2016 Mar 1;11(3):e0150138. doi: 10.1371/journal.pone.0150138. eCollection 2016.
583 Deregulation of Rab and Rab effector genes in bladder cancer.PLoS One. 2012;7(6):e39469. doi: 10.1371/journal.pone.0039469. Epub 2012 Jun 19.
584 Loss of Glycogen Debranching Enzyme AGL Drives Bladder Tumor Growth via Induction of Hyaluronic Acid Synthesis.Clin Cancer Res. 2016 Mar 1;22(5):1274-83. doi: 10.1158/1078-0432.CCR-15-1706. Epub 2015 Oct 21.
585 EIF2C, Dicer, and Drosha are up-regulated along tumor progression and associated with poor prognosis in bladder carcinoma.Tumour Biol. 2015 Jul;36(7):5071-9. doi: 10.1007/s13277-015-3158-z. Epub 2015 Feb 6.
586 An FGFR3/MYC positive feedback loop provides new opportunities for targeted therapies in bladder cancers.EMBO Mol Med. 2018 Apr;10(4):e8163. doi: 10.15252/emmm.201708163.
587 ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression.Cancer Sci. 2013 Mar;104(3):321-7. doi: 10.1111/cas.12089. Epub 2013 Feb 14.
588 ALKBH3 contributes to survival and angiogenesis of human urothelial carcinoma cells through NADPH oxidase and tweak/Fn14/VEGF signals.Clin Cancer Res. 2012 Oct 1;18(19):5247-55. doi: 10.1158/1078-0432.CCR-12-0955. Epub 2012 Jul 31.
589 ALKBH8 promotes bladder cancer growth and progression through regulating the expression of survivin.Biochem Biophys Res Commun. 2016 Aug 26;477(3):413-8. doi: 10.1016/j.bbrc.2016.06.084. Epub 2016 Jun 18.
590 Antitumor activity of sulfated hyaluronic acid fragments in pre-clinical models of bladder cancer.Oncotarget. 2017 Apr 11;8(15):24262-24274. doi: 10.18632/oncotarget.10529.
591 Multitarget fluorescence in situ hybridization and melanoma antigen genes analysis in primary bladder carcinoma.Cancer Genet Cytogenet. 2006 Jan 1;164(1):32-8. doi: 10.1016/j.cancergencyto.2005.06.006.
592 Cross-species analysis of the canine and human bladder cancer transcriptome and exome.Genes Chromosomes Cancer. 2017 Apr;56(4):328-343. doi: 10.1002/gcc.22441. Epub 2017 Jan 25.
593 Circular RNA Cdr1as sensitizes bladder cancer to cisplatin by upregulating APAF1 expression through miR-1270 inhibition.Mol Oncol. 2019 Jul;13(7):1559-1576. doi: 10.1002/1878-0261.12523. Epub 2019 Jun 9.
594 Association of germline variants in the APOBEC3 region with cancer risk and enrichment with APOBEC-signature mutations in tumors.Nat Genet. 2016 Nov;48(11):1330-1338. doi: 10.1038/ng.3670. Epub 2016 Sep 19.
595 Expression of p53 family genes in urinary bladder cancer: correlation with disease aggressiveness and recurrence.Tumour Biol. 2014 Mar;35(3):2481-9. doi: 10.1007/s13277-013-1328-4. Epub 2013 Nov 11.
596 Immunocytochemistry for ARID1A as a potential biomarker in urine cytology of bladder cancer.Cancer Cytopathol. 2019 Sep;127(9):578-585. doi: 10.1002/cncy.22167. Epub 2019 Aug 6.
597 Expression of ARID1B Is Associated With Poor Outcomes and Predicts the Benefit from Adjuvant Chemotherapy in Bladder Urothelial Carcinoma.J Cancer. 2017 Sep 27;8(17):3490-3497. doi: 10.7150/jca.19109. eCollection 2017.
598 Single nucleotide polymorphism of the JWA gene is associated with risk of leukemia: a case-control study in a Chinese population.J Toxicol Environ Health A. 2007 Jun;70(11):895-900. doi: 10.1080/15287390701285956.
599 Silencing of Armadillo Repeat-Containing Protein 8 (ARMc8) Inhibits TGF--Induced EMT in Bladder Carcinoma UMUC3 Cells.Oncol Res. 2017 Jan 2;25(1):99-105. doi: 10.3727/096504016X14719078133609.
600 Overexpression of the ASPM gene is associated with aggressiveness and poor outcome in bladder cancer.Oncol Lett. 2019 Feb;17(2):1865-1876. doi: 10.3892/ol.2018.9762. Epub 2018 Nov 26.
601 Rewiring of cisplatin-resistant bladder cancer cells through epigenetic regulation of genes involved in amino acid metabolism.Theranostics. 2018 Aug 10;8(16):4520-4534. doi: 10.7150/thno.25130. eCollection 2018.
602 Association between AXIN1 Gene Polymorphisms and Bladder Cancer in Chinese Han Population.Dis Markers. 2019 Apr 15;2019:3949343. doi: 10.1155/2019/3949343. eCollection 2019.
603 B4GALT1 expression predicts prognosis and adjuvant chemotherapy benefits in muscle-invasive bladder cancer patients.BMC Cancer. 2018 May 24;18(1):590. doi: 10.1186/s12885-018-4497-0.
604 Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer.Aging (Albany NY). 2018 Oct 12;10(10):2606-2623. doi: 10.18632/aging.101573.
605 BAMBI gene is epigenetically silenced in subset of high-grade bladder cancer.Int J Cancer. 2009 Jul 15;125(2):328-38. doi: 10.1002/ijc.24318.
606 The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis.J Biomed Sci. 2017 Aug 26;24(1):61. doi: 10.1186/s12929-017-0360-x.
607 BCAN Think Tank session 2: Molecular detection of bladder cancer: the path to progress.Urol Oncol. 2010 May-Jun;28(3):334-7. doi: 10.1016/j.urolonc.2009.07.026.
608 Multitarget siRNA inhibition of antiapoptotic genes (XIAP, BCL2, BCL-X(L)) in bladder cancer cells.Anticancer Res. 2008 Jul-Aug;28(4B):2259-63.
609 Identification of BLCAP as a novel STAT3 interaction partner in bladder cancer.PLoS One. 2017 Nov 30;12(11):e0188827. doi: 10.1371/journal.pone.0188827. eCollection 2017.
610 Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer.J Exp Clin Cancer Res. 2017 Jun 9;36(1):77. doi: 10.1186/s13046-017-0542-0.
611 Circ-BPTF promotes bladder cancer progression and recurrence through the miR-31-5p/RAB27A axis.Aging (Albany NY). 2018 Aug 9;10(8):1964-1976. doi: 10.18632/aging.101520.
612 The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines.Clin Exp Metastasis. 2000;18(6):519-25. doi: 10.1023/a:1011819621859.
613 BTG2 is a tumor suppressor gene upregulated by p53 and PTEN in human bladder carcinoma cells.Cancer Med. 2018 Jan;7(1):184-195. doi: 10.1002/cam4.1263. Epub 2017 Dec 13.
614 Lost expression of cell adhesion molecule 1 is associated with bladder cancer progression and recurrence and its overexpression inhibited tumor cell malignant behaviors.Oncol Lett. 2019 Feb;17(2):2047-2056. doi: 10.3892/ol.2018.9845. Epub 2018 Dec 18.
615 Suppression of human bladder cancer growth by increased expression of C-CAM1 gene in an orthotopic model.Cancer Res. 1996 Aug 1;56(15):3431-5.
616 The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer.Cancer Gene Ther. 2020 Apr;27(3-4):189-202. doi: 10.1038/s41417-019-0085-y. Epub 2019 Feb 6.
617 Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.Cancer Lett. 2000 Oct 31;159(2):127-34. doi: 10.1016/s0304-3835(00)00522-x.
618 Detection of bladder cancer using novel DNA methylation biomarkers in urine sediments.Cancer Epidemiol Biomarkers Prev. 2011 Jul;20(7):1483-91. doi: 10.1158/1055-9965.EPI-11-0067. Epub 2011 May 17.
619 CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration.Oncotarget. 2015 Sep 22;6(28):25856-67. doi: 10.18632/oncotarget.4624.
620 Long noncoding RNAGAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (CC motif) ligand 1 expression.Mol Med Rep. 2016 Jan;13(1):27-34. doi: 10.3892/mmr.2015.4503. Epub 2015 Nov 5.
621 Establishment and characterization of two human bladder cancer cell lines.Hum Cell. 1996 Mar;9(1):49-56.
622 NOV is upregulated and promotes migration and invasion in bladder cancer.Tumour Biol. 2014 Jul;35(7):6749-55. doi: 10.1007/s13277-014-1919-8. Epub 2014 Apr 10.
623 The decrease of cyclin B2 expression inhibits invasion and metastasis of bladder cancer.Urol Oncol. 2016 May;34(5):237.e1-10. doi: 10.1016/j.urolonc.2015.11.011. Epub 2015 Dec 17.
624 High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk.Carcinogenesis. 2007 Oct;28(10):2160-5. doi: 10.1093/carcin/bgm167. Epub 2007 Aug 29.
625 Rs6265 polymorphism in brain-derived neurotrophic factor (Val/Val and Val/Met) promotes proliferation of bladder cancer cells by suppressing microRNA-205 and enhancing expression of cyclin J.J Cell Biochem. 2019 May;120(5):7297-7308. doi: 10.1002/jcb.28004. Epub 2018 Nov 1.
626 CD164 promotes tumor progression and predicts the poor prognosis of bladder cancer.Cancer Med. 2018 Aug;7(8):3763-3772. doi: 10.1002/cam4.1607. Epub 2018 Jul 18.
627 Automated quantification of FISH signals in urinary cells enables the assessment of chromosomal aberration patterns characteristic for bladder cancer.Biochem Biophys Res Commun. 2014 Jun 13;448(4):467-72. doi: 10.1016/j.bbrc.2014.04.137. Epub 2014 May 4.
628 Hypermethylation of E-cadherin, p16, p14, and RASSF1A genes in pathologically normal urothelium predict bladder recurrence of bladder cancer after transurethral resection.Urol Oncol. 2012 Mar-Apr;30(2):177-81. doi: 10.1016/j.urolonc.2010.01.002. Epub 2010 Aug 25.
629 Hsa-miR-429 promotes bladder cancer cell proliferation via inhibiting CDKN2B.Oncotarget. 2017 Aug 3;8(40):68721-68729. doi: 10.18632/oncotarget.19878. eCollection 2017 Sep 15.
630 Centromere protein U is a potential target for gene therapy of human bladder cancer.Oncol Rep. 2017 Aug;38(2):735-744. doi: 10.3892/or.2017.5769. Epub 2017 Jun 30.
631 Circular RNA CEP128 promotes bladder cancer progression by regulating Mir-145-5p/Myd88 via MAPK signaling pathway.Int J Cancer. 2019 Oct 15;145(8):2170-2181. doi: 10.1002/ijc.32311. Epub 2019 May 30.
632 miR-3622a promotes proliferation and invasion of bladder cancer cells by downregulating LASS2.Gene. 2019 Jun 15;701:23-31. doi: 10.1016/j.gene.2019.02.083. Epub 2019 Mar 19.
633 Long noncoding RNA MAGI2-AS3 regulates CCDC19 expression by sponging miR-15b-5p and suppresses bladder cancer progression.Biochem Biophys Res Commun. 2018 Dec 9;507(1-4):231-235. doi: 10.1016/j.bbrc.2018.11.013. Epub 2018 Nov 12.
634 Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine.Biosens Bioelectron. 2018 Oct 15;117:620-627. doi: 10.1016/j.bios.2018.07.003. Epub 2018 Jul 3.
635 miR-182-5p affects human bladder cancer cell proliferation, migration and invasion through regulating Cofilin 1.Cancer Cell Int. 2019 Feb 28;19:42. doi: 10.1186/s12935-019-0758-5. eCollection 2019.
636 Decreased expression of p57(KIP2)mRNA in human bladder cancer.Br J Cancer. 2000 Sep;83(5):626-31. doi: 10.1054/bjoc.2000.1298.
637 CIP2A depletion potentiates the chemosensitivity of cisplatin by inducing increased apoptosis in bladder cancer cells.Oncol Rep. 2018 Nov;40(5):2445-2454. doi: 10.3892/or.2018.6641. Epub 2018 Aug 10.
638 Possible role of 5-alpha reductase inhibitors in non-invasive bladder urothelial neoplasm: multicenter study.Minerva Urol Nephrol. 2022 Jun;74(3):337-343. doi: 10.23736/S2724-6051.19.03563-X. Epub 2019 Dec 12.
639 Cyclin-dependent kinase-associated protein Cks2 is associated with bladder cancer progression.J Int Med Res. 2011;39(2):533-40. doi: 10.1177/147323001103900222.
640 CLASP2 is involved in the EMT and early progression after transurethral resection of the bladder tumor.BMC Cancer. 2017 Feb 6;17(1):105. doi: 10.1186/s12885-017-3101-3.
641 Correction: CLCA4 inhibits bladder cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT pathway.Oncotarget. 2019 Jan 29;10(9):1010. doi: 10.18632/oncotarget.26656. eCollection 2019 Jan 29.
642 CLT1 targets bladder cancer through integrin 51 and CLIC3.Mol Cancer Res. 2013 Feb;11(2):194-203. doi: 10.1158/1541-7786.MCR-12-0300. Epub 2012 Nov 30.
643 Functional characterization of the tumor suppressor CMTM8 and its association with prognosis in bladder cancer.Tumour Biol. 2016 May;37(5):6217-25. doi: 10.1007/s13277-015-4508-6. Epub 2015 Nov 28.
644 Risk score based on three mRNA expression predicts the survival of bladder cancer.Oncotarget. 2017 Jun 27;8(37):61583-61591. doi: 10.18632/oncotarget.18642. eCollection 2017 Sep 22.
645 The clinical significance of COL5A2 in patients with bladder cancer: A retrospective analysis of bladder cancer gene expression data.Medicine (Baltimore). 2018 Mar;97(10):e0091. doi: 10.1097/MD.0000000000010091.
646 High expression of constitutive photomorphogenic 1 (COP1) is associated with poor prognosis in bladder cancer.Tumour Biol. 2016 Jul;37(7):8917-22. doi: 10.1007/s13277-015-4765-4. Epub 2016 Jan 11.
647 Single-cell RNA-seq analysis reveals the platinum resistance gene COX7B and the surrogate marker CD63.Cancer Med. 2018 Dec;7(12):6193-6204. doi: 10.1002/cam4.1828. Epub 2018 Oct 26.
648 Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers.Breast Cancer Res. 2016 Jan 25;18(1):12. doi: 10.1186/s13058-016-0672-x.
649 The role of CT10 regulation of kinase-like in cancer.Future Oncol. 2014 Dec;10(16):2687-97. doi: 10.2217/fon.14.199.
650 Dysregulated genes targeted by microRNAs and metabolic pathways in bladder cancer revealed by bioinformatics methods.Oncol Lett. 2018 Jun;15(6):9617-9624. doi: 10.3892/ol.2018.8602. Epub 2018 Apr 27.
651 CUL4B promotes bladder cancer metastasis and induces epithelial-to-mesenchymal transition by activating the Wnt/-catenin signaling pathway.Oncotarget. 2017 Aug 24;8(44):77241-77253. doi: 10.18632/oncotarget.20455. eCollection 2017 Sep 29.
652 Genome-Wide Association Study of Bladder Cancer in a Chinese Cohort Reveals a New Susceptibility Locus at 5q12.3.Cancer Res. 2016 Jun 1;76(11):3277-84. doi: 10.1158/0008-5472.CAN-15-2564. Epub 2016 Mar 29.
653 CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-B pathway.Biochem Biophys Res Commun. 2018 Apr 15;498(4):862-868. doi: 10.1016/j.bbrc.2018.03.071. Epub 2018 Mar 17.
654 Mitochondrial cytochrome B gene mutation promotes tumor growth in bladder cancer.Cancer Res. 2008 Feb 1;68(3):700-6. doi: 10.1158/0008-5472.CAN-07-5532.
655 Estrogen receptor promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals.Exp Mol Med. 2018 Nov 20;50(11):1-11. doi: 10.1038/s12276-018-0155-5.
656 DAPK Promoter Methylation and Bladder Cancer Risk: A Systematic Review and Meta-Analysis.PLoS One. 2016 Dec 1;11(12):e0167228. doi: 10.1371/journal.pone.0167228. eCollection 2016.
657 The prognostic significance of DAPK1 in bladder cancer.PLoS One. 2017 Apr 7;12(4):e0175290. doi: 10.1371/journal.pone.0175290. eCollection 2017.
658 Drebrin at Junctional Plaques.Adv Exp Med Biol. 2017;1006:313-328. doi: 10.1007/978-4-431-56550-5_18.
659 Use of yeast chemigenomics and COXEN informatics in preclinical evaluation of anticancer agents.Neoplasia. 2011 Jan;13(1):72-80. doi: 10.1593/neo.101214.
660 Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells.Carcinogenesis. 2018 Mar 8;39(3):482-492. doi: 10.1093/carcin/bgy015.
661 DCAMKL1 is associated with the malignant status and poor outcome in bladder cancer.Tumour Biol. 2017 Jun;39(6):1010428317703822. doi: 10.1177/1010428317703822.
662 Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer.Cancer Res. 2008 Apr 1;68(7):2530-7. doi: 10.1158/0008-5472.CAN-07-5991.
663 DDX39 acts as a suppressor of invasion for bladder cancer.Cancer Sci. 2012 Jul;103(7):1363-9. doi: 10.1111/j.1349-7006.2012.02298.x. Epub 2012 Jun 4.
664 miR-24-3p regulates bladder cancer cell proliferation, migration, invasion and autophagy by targeting DEDD.Oncol Rep. 2017 Feb;37(2):1123-1131. doi: 10.3892/or.2016.5326. Epub 2016 Dec 16.
665 Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling.Oncotarget. 2017 Mar 7;8(10):17059-17069. doi: 10.18632/oncotarget.15001.
666 Methylation-mediated silencing of Dlg5 facilitates bladder cancer metastasis.Exp Cell Res. 2015 Feb 15;331(2):399-407. doi: 10.1016/j.yexcr.2014.11.015. Epub 2014 Dec 3.
667 Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis.Clin Biochem. 2014 Jan;47(1-2):104-10. doi: 10.1016/j.clinbiochem.2013.10.022. Epub 2013 Oct 29.
668 Detection of deleted in malignant brain tumors 1 and runt-related transcription factor 3 gene expressions in bladder carcinoma.Mol Biol Rep. 2012 Apr;39(4):4691-5. doi: 10.1007/s11033-011-1261-9. Epub 2011 Sep 29.
669 Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.Oncogene. 2017 Jan 5;36(1):35-46. doi: 10.1038/onc.2016.172. Epub 2016 Jun 6.
670 MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1.Oncotarget. 2015 Jun 30;6(18):16043-58. doi: 10.18632/oncotarget.3755.
671 Luteolin induces N-acetylation and DNA adduct of 2-aminofluorene accompanying N-acetyltransferase activity and gene expression in human bladder cancer T24 cell line.Anticancer Res. 2003 Jan-Feb;23(1A):355-62.
672 Genetic variation in DROSHA 3'UTR regulated by hsa-miR-27b is associated with bladder cancer risk.PLoS One. 2013 Nov 28;8(11):e81524. doi: 10.1371/journal.pone.0081524. eCollection 2013.
673 DUOX2 promotes the elimination of the Klebsiella pneumoniae strainK5 from T24 cells through the reactive oxygen species pathway.Int J Mol Med. 2015 Aug;36(2):551-8. doi: 10.3892/ijmm.2015.2234. Epub 2015 Jun 3.
674 E2F4 Program Is Predictive of Progression and Intravesical Immunotherapy Efficacy in Bladder Cancer.Mol Cancer Res. 2015 Sep;13(9):1316-24. doi: 10.1158/1541-7786.MCR-15-0120. Epub 2015 Jun 1.
675 Silencing of ECHDC1 inhibits growth of gemcitabine-resistant bladder cancer cells.Oncol Lett. 2018 Jan;15(1):522-527. doi: 10.3892/ol.2017.7269. Epub 2017 Oct 26.
676 Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression.J Urol. 2014 Aug;192(2):583-92. doi: 10.1016/j.juro.2014.02.035. Epub 2014 Feb 14.
677 Loss of expression of the tumour suppressor gene AIMP3 predicts survival following radiotherapy in muscle-invasive bladder cancer.Int J Cancer. 2015 Feb 1;136(3):709-20. doi: 10.1002/ijc.29022. Epub 2014 Jul 22.
678 Fibulin-3 promotes muscle-invasive bladder cancer.Oncogene. 2017 Sep 14;36(37):5243-5251. doi: 10.1038/onc.2017.149. Epub 2017 May 15.
679 Inhibition of angiogenesis by leflunomide via targeting the soluble ephrin-A1/EphA2 system in bladder cancer.Sci Rep. 2018 Jan 24;8(1):1539. doi: 10.1038/s41598-018-19788-y.
680 Exploring the FGFR3-related oncogenic mechanism in bladder cancer using bioinformatics strategy.World J Surg Oncol. 2017 Mar 20;15(1):66. doi: 10.1186/s12957-017-1125-4.
681 Translation initiation factor eIF3b expression in human cancer and its role in tumor growth and lung colonization.Clin Cancer Res. 2013 Jun 1;19(11):2850-60. doi: 10.1158/1078-0432.CCR-12-3084. Epub 2013 Apr 10.
682 Common and differentially expressed long noncoding RNAs for the characterization of high and low grade bladder cancer.Gene. 2016 Oct 30;592(1):78-85. doi: 10.1016/j.gene.2016.07.042. Epub 2016 Jul 20.
683 Expression of Phospho-ELK1 and Its Prognostic Significance in Urothelial Carcinoma of the Upper Urinary Tract.Int J Mol Sci. 2018 Mar 8;19(3):777. doi: 10.3390/ijms19030777.
684 Repression of engrailed 2 inhibits the proliferation and invasion of human bladder cancer in vitro and in vivo.Oncol Rep. 2015 May;33(5):2319-30. doi: 10.3892/or.2015.3858. Epub 2015 Mar 17.
685 Increased neuron specific enolase expression by urothelial cells exposed to or malignantly transformed by exposure to Cd?? or As??. Toxicol Lett. 2012 Jul 7;212(1):66-74. doi: 10.1016/j.toxlet.2012.05.003. Epub 2012 May 14.
686 Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors.Nat Genet. 2016 Jun;48(6):600-606. doi: 10.1038/ng.3557. Epub 2016 Apr 25.
687 Increased expression of ESCO1 is correlated with poor patient survival and its role in human bladder cancer.Tumour Biol. 2016 Apr;37(4):5165-70. doi: 10.1007/s13277-015-4375-1. Epub 2015 Nov 7.
688 Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells.Cancer Invest. 2008 Aug;26(7):725-33. doi: 10.1080/07357900801941845.
689 Transcriptional regulatory networks in human lung adenocarcinoma.Mol Med Rep. 2012 Nov;6(5):961-6. doi: 10.3892/mmr.2012.1034. Epub 2012 Aug 14.
690 OIP5 Promotes Growth, Metastasis and Chemoresistance to Cisplatin in Bladder Cancer Cells.J Cancer. 2018 Nov 24;9(24):4684-4695. doi: 10.7150/jca.27381. eCollection 2018.
691 Diagnostic value of combined IQGAP3/BMP4 and IQGAP3/FAM107A expression ratios in urinary cell-free DNA for discriminating bladder cancer from hematuria.Urol Oncol. 2019 Jan;37(1):86-96. doi: 10.1016/j.urolonc.2018.10.023. Epub 2018 Nov 13.
692 Cells Deficient in the Fanconi Anemia Protein FANCD2 are Hypersensitive to the Cytotoxicity and DNA Damage Induced by Coffee and Caffeic Acid.Toxins (Basel). 2016 Jul 8;8(7):211. doi: 10.3390/toxins8070211.
693 Fibulin-1 is epigenetically down-regulated and related with bladder cancer recurrence.BMC Cancer. 2014 Sep 18;14:677. doi: 10.1186/1471-2407-14-677.
694 Fibulin-5 is down-regulated in urothelial carcinoma of bladder and inhibits growth and invasion of human bladder cancer cell line 5637.Urol Oncol. 2011 Jul-Aug;29(4):430-5. doi: 10.1016/j.urolonc.2009.06.004. Epub 2009 Sep 19.
695 Role of the focal adhesion protein kindlin-1 in breast cancer growth and lung metastasis.J Natl Cancer Inst. 2011 Sep 7;103(17):1323-37. doi: 10.1093/jnci/djr290. Epub 2011 Aug 10.
696 Prognostic value of Kindlin-2 expression in patients with solid tumors: a meta-analysis.Cancer Cell Int. 2018 Oct 22;18:166. doi: 10.1186/s12935-018-0651-7. eCollection 2018.
697 Molecular genetics of bladder cancer: targets for diagnosis and therapy.J Exp Clin Cancer Res. 2006 Jun;25(2):145-60.
698 Loss of Fezf2 promotes malignant progression of bladder cancer by regulating the NF-B signaling pathway.Lab Invest. 2018 Sep;98(9):1225-1236. doi: 10.1038/s41374-018-0077-9. Epub 2018 Jun 20.
699 Analyses of publicly available genomics resources define FGF-2-expressing bladder carcinomas as EMT-prone, proliferative tumors with low mutation rates and high expression of CTLA-4, PD-1 and PD-L1.Signal Transduct Target Ther. 2017;2:16045-. doi: 10.1038/sigtrans.2016.45. Epub 2017 Mar 17.
700 The evolving understanding of microRNA in bladder cancer.Urol Oncol. 2014 Jan;32(1):41.e31-40. doi: 10.1016/j.urolonc.2013.04.014. Epub 2013 Aug 2.
701 MiR-210-3p inhibits the tumor growth and metastasis of bladder cancer via targeting fibroblast growth factor receptor-like 1.Am J Cancer Res. 2017 Aug 1;7(8):1738-1753. eCollection 2017.
702 Hypermethylation of FOXA1 and allelic loss of PTEN drive squamous differentiation and promote heterogeneity in bladder cancer.Oncogene. 2020 Feb;39(6):1302-1317. doi: 10.1038/s41388-019-1063-4. Epub 2019 Oct 21.
703 On a FOX hunt: functions of FOX transcriptional regulators in bladder cancer.Nat Rev Urol. 2017 Feb;14(2):98-106. doi: 10.1038/nrurol.2016.239. Epub 2016 Nov 29.
704 Forkhead box O-class 1 and forkhead box G1 as prognostic markers for bladder cancer.J Korean Med Sci. 2009 Jun;24(3):468-73. doi: 10.3346/jkms.2009.24.3.468. Epub 2009 Jun 12.
705 FOXJ1 promotes bladder cancer cell growth and regulates Warburg effect.Biochem Biophys Res Commun. 2018 Jan 1;495(1):988-994. doi: 10.1016/j.bbrc.2017.11.063. Epub 2017 Nov 10.
706 Correlations of Foxo3 and Foxo4 expressions with clinicopathological features and prognosis of bladder cancer.Pathol Res Pract. 2017 Jul;213(7):766-772. doi: 10.1016/j.prp.2017.04.004. Epub 2017 Apr 20.
707 MiR-1-3p inhibits cell proliferation and invasion by regulating BDNF-TrkB signaling pathway in bladder cancer.Neoplasma. 2018;65(1):89-96. doi: 10.4149/neo_2018_161128N594.
708 Knockdown of fibrous sheath interacting protein 1 expression reduces bladder urothelial carcinoma cell proliferation and induces apoptosis via inhibition of the PI3K/AKT pathway.Onco Targets Ther. 2018 Apr 5;11:1961-1971. doi: 10.2147/OTT.S158275. eCollection 2018.
709 MicroRNA-101 inhibits cell migration and invasion in bladder cancer via targeting FZD4.Exp Ther Med. 2019 Feb;17(2):1476-1485. doi: 10.3892/etm.2018.7084. Epub 2018 Dec 11.
710 GADD45a Mediated Cell Cycle Inhibition Is Regulated By P53 In Bladder Cancer.Onco Targets Ther. 2019 Sep 16;12:7591-7599. doi: 10.2147/OTT.S222223. eCollection 2019.
711 Evidence for two tumor suppressor loci associated with proximal chromosome 9p to q and distal chromosome 9q in bladder cancer and the initial screening for GAS1 and PTC mutations.Cancer Res. 1996 Nov 1;56(21):5039-43.
712 Puerarin Inhibits Proliferation and Induces Apoptosis by Upregulation of miR-16 in Bladder Cancer Cell Line T24.Oncol Res. 2018 Sep 14;26(8):1227-1234. doi: 10.3727/096504018X15178736525106. Epub 2018 Feb 8.
713 Growth differentiation factor-9 expression is inversely correlated with an aggressive behaviour in human bladder cancer cells.Int J Mol Med. 2012 Mar;29(3):428-34. doi: 10.3892/ijmm.2011.858. Epub 2011 Dec 12.
714 SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer.Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):14884-9. doi: 10.1073/pnas.0902042106. Epub 2009 Aug 17.
715 Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer.Jpn J Clin Oncol. 2015 Nov;45(11):1055-63. doi: 10.1093/jjco/hyv132. Epub 2015 Sep 14.
716 Association of GNB4 intron-1 haplotypes with survival in patients with UICC stage III and IV colorectal carcinoma.Anticancer Res. 2009 Apr;29(4):1271-4.
717 Differential effects of Nucleostemin suppression on cell cycle arrest and apoptosis in the bladder cancer cell lines 5637 and SW1710.Cell Prolif. 2009 Dec;42(6):762-9. doi: 10.1111/j.1365-2184.2009.00635.x. Epub 2009 Aug 25.
718 GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-1/Smad2 signalling pathway.J Cell Mol Med. 2018 Mar;22(3):1650-1665. doi: 10.1111/jcmm.13442. Epub 2018 Jan 19.
719 Protein kinase C- (PKC) modulates cell apoptosis by stimulating nuclear translocation of NF-kappa-B p65 in urothelial cell carcinoma of the bladder.BMC Cancer. 2017 Jun 19;17(1):432. doi: 10.1186/s12885-017-3401-7.
720 Profiling the expression pattern of GPI transamidase complex subunits in human cancer.Mod Pathol. 2008 Aug;21(8):979-91. doi: 10.1038/modpathol.2008.76. Epub 2008 May 16.
721 circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide.Mol Ther Nucleic Acids. 2018 Dec 7;13:633-641. doi: 10.1016/j.omtn.2018.10.008. Epub 2018 Oct 18.
722 Oestrogen promotes tumorigenesis of bladder cancer by inducing the enhancer RNA-eGREB1.J Cell Mol Med. 2018 Dec;22(12):5919-5927. doi: 10.1111/jcmm.13861. Epub 2018 Sep 4.
723 Susceptibility genes: GSTM1 and GSTM3 as genetic risk factors in bladder cancer.Cytogenet Cell Genet. 2000;91(1-4):234-8. doi: 10.1159/000056851.
724 The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer.J Proteomics. 2017 Mar 6;156:94-103. doi: 10.1016/j.jprot.2017.01.013. Epub 2017 Jan 27.
725 The impact of the receptor of hyaluronan-mediated motility (RHAMM) on human urothelial transitional cell cancer of the bladder.PLoS One. 2013 Sep 17;8(9):e75681. doi: 10.1371/journal.pone.0075681. eCollection 2013.
726 The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression.Cell Death Dis. 2014 Sep 4;5(9):e1402. doi: 10.1038/cddis.2014.367.
727 Silencing of HJURP induces dysregulation of cell cycle and ROS metabolism in bladder cancer cells via PPAR-SIRT1 feedback loop.J Cancer. 2017 Jul 20;8(12):2282-2295. doi: 10.7150/jca.19967. eCollection 2017.
728 Association between the cytotoxic T-lymphocyte antigen 4 +49A/G polymorphism and bladder cancer risk.Tumour Biol. 2014 Feb;35(2):1139-42. doi: 10.1007/s13277-013-1152-x. Epub 2013 Sep 8.
729 Genetic variants in the tumor necrosis factor-related apoptosis-inducing ligand and death receptor genes contribute to susceptibility to bladder cancer.Genet Test Mol Biomarkers. 2015 Jun;19(6):309-15. doi: 10.1089/gtmb.2015.0050. Epub 2015 May 8.
730 Human HLAF adjacent transcript 10 promotes the formation of cancer initiating cells and cisplatin resistance in bladder cancer.Mol Med Rep. 2018 Jul;18(1):308-314. doi: 10.3892/mmr.2018.9005. Epub 2018 May 9.
731 Downregulation of microRNA-532-5p promotes the proliferation and invasion of bladder cancer cells through promotion of HMGB3/Wnt/-catenin signaling.Chem Biol Interact. 2019 Feb 25;300:73-81. doi: 10.1016/j.cbi.2019.01.015. Epub 2019 Jan 11.
732 Association of hyaluronic acid family members (HAS1, HAS2, and HYAL-1) with bladder cancer diagnosis and prognosis.Cancer. 2011 Mar 15;117(6):1197-209. doi: 10.1002/cncr.25565. Epub 2010 Oct 19.
733 Expression of HNF4G and its potential functions in lung cancer.Oncotarget. 2017 Dec 4;9(26):18018-18028. doi: 10.18632/oncotarget.22933. eCollection 2018 Apr 6.
734 MicroRNA-146b Overexpression Promotes Human Bladder Cancer Invasion via Enhancing ETS2-Mediated mmp2 mRNA Transcription.Mol Ther Nucleic Acids. 2019 Jun 7;16:531-542. doi: 10.1016/j.omtn.2019.04.007. Epub 2019 Apr 14.
735 HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer.Am J Transl Res. 2019 Nov 15;11(11):7035-7048. eCollection 2019.
736 Long Noncoding RNA LBCS Inhibits Self-Renewal and Chemoresistance of Bladder Cancer Stem Cells through Epigenetic Silencing of SOX2.Clin Cancer Res. 2019 Feb 15;25(4):1389-1403. doi: 10.1158/1078-0432.CCR-18-1656. Epub 2018 Nov 5.
737 HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways.Oncotarget. 2017 Feb 21;8(8):13586-13599. doi: 10.18632/oncotarget.14600.
738 The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene.Int J Cancer. 2012 Aug 1;131(3):E179-89. doi: 10.1002/ijc.26501. Epub 2011 Dec 21.
739 An Epigenomic Approach to Improving Response to Neoadjuvant Cisplatin Chemotherapy in Bladder Cancer.Biomolecules. 2016 Sep 2;6(3):37. doi: 10.3390/biom6030037.
740 Integrated analysis of a competing endogenous RNA network reveals key lncRNAs as potential prognostic biomarkers for human bladder cancer.Medicine (Baltimore). 2018 Aug;97(35):e11887. doi: 10.1097/MD.0000000000011887.
741 MiR-193a-3p promotes the multi-chemoresistance of bladder cancer by targeting the HOXC9 gene.Cancer Lett. 2015 Feb 1;357(1):105-113. doi: 10.1016/j.canlet.2014.11.002. Epub 2014 Nov 11.
742 MicroRNA-10b promotes migration and invasion through KLF4 and HOXD10 in human bladder cancer.Oncol Rep. 2014 Apr;31(4):1832-8. doi: 10.3892/or.2014.3048. Epub 2014 Feb 24.
743 Inhibition of inducible heat shock protein-70 (hsp72) enhances bortezomib-induced cell death in human bladder cancer cells.PLoS One. 2013 Jul 18;8(7):e69509. doi: 10.1371/journal.pone.0069509. Print 2013.
744 Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion.Eur J Cancer. 2010 Jan;46(1):207-15. doi: 10.1016/j.ejca.2009.10.020.
745 Conditionally replicating adenovirus-mediated gene therapy in bladder cancer: an orthotopic in vivo model.Urol Oncol. 2006 Jul-Aug;24(4):362-71. doi: 10.1016/j.urolonc.2005.11.028.
746 Amplification and overexpression of the ID4 gene at 6p22.3 in bladder cancer.Mol Cancer. 2005 May 5;4(1):16. doi: 10.1186/1476-4598-4-16.
747 Increased expression of immediate early response gene 3 protein promotes aggressive progression and predicts poor prognosis in human bladder cancer.BMC Urol. 2018 Sep 24;18(1):82. doi: 10.1186/s12894-018-0388-6.
748 Anti-interleukin-10R1 monoclonal antibody in combination with bacillus Calmette--Gurin is protective against bladder cancer metastasis in a murine orthotopic tumour model and demonstrates systemic specific anti-tumour immunity.Clin Exp Immunol. 2014 Jul;177(1):261-8. doi: 10.1111/cei.12315.
749 Glycoprotein-130 Expression Is Associated with Aggressive Bladder Cancer and Is a Potential Therapeutic Target.Mol Cancer Ther. 2019 Feb;18(2):413-420. doi: 10.1158/1535-7163.MCT-17-1079. Epub 2018 Oct 31.
750 TGF1 Promotes Gemcitabine Resistance through Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer.Theranostics. 2017 Jul 22;7(12):3053-3067. doi: 10.7150/thno.19542. eCollection 2017.
751 Loss of heterozygosity of chromosome 13q33-34 region and molecular analysis of ING1 and p53 genes in bladder carcinoma.Mol Biol Rep. 2015 Feb;42(2):507-16. doi: 10.1007/s11033-014-3794-1. Epub 2014 Oct 17.
752 Comprehensive pathway-based interrogation of genetic variations in the nucleotide excision DNA repair pathway and risk of bladder cancer.Cancer. 2012 Jan 1;118(1):205-15. doi: 10.1002/cncr.26224. Epub 2011 Jun 20.
753 Reduced ING4 Expression Is Associated with the Malignancy of Human Bladder.Urol Int. 2015;94(4):464-71. doi: 10.1159/000364832. Epub 2015 Mar 14.
754 The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer.Oncotarget. 2015 Apr 30;6(12):10195-206. doi: 10.18632/oncotarget.3555.
755 SubID, a non-median dichotomization tool for heterogeneous populations, reveals the pan-cancer significance of INPP4B and its regulation by EVI1 in AML.PLoS One. 2018 Feb 7;13(2):e0191510. doi: 10.1371/journal.pone.0191510. eCollection 2018.
756 SKIP expression is correlated with clinical prognosis in patients with bladder cancer.Int J Clin Exp Pathol. 2014 Mar 15;7(4):1695-701. eCollection 2014.
757 Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors.Mol Cancer Res. 2015 Sep;13(9):1306-15. doi: 10.1158/1541-7786.MCR-15-0130. Epub 2015 Jun 15.
758 MicroRNA-124-3p suppresses cell migration and invasion by targeting ITGA3 signaling in bladder cancer.Cancer Biomark. 2019;24(2):159-172. doi: 10.3233/CBM-182000.
759 Epigenetic inactivation of ITIH5 promotes bladder cancer progression and predicts early relapse of pT1 high-grade urothelial tumours.Carcinogenesis. 2014 Mar;35(3):727-36. doi: 10.1093/carcin/bgt375. Epub 2013 Nov 21.
760 Jarid2 enhances the progression of bladder cancer through regulating PTEN/AKT signaling.Life Sci. 2019 Aug 1;230:162-168. doi: 10.1016/j.lfs.2019.05.053. Epub 2019 May 21.
761 A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.Nat Genet. 2010 Nov;42(11):978-84. doi: 10.1038/ng.687. Epub 2010 Oct 24.
762 HBO1 promotes cell proliferation in bladder cancer via activation of Wnt/-catenin signaling.Mol Carcinog. 2018 Jan;57(1):12-21. doi: 10.1002/mc.22715. Epub 2017 Sep 2.
763 Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2.Sci Transl Med. 2017 Feb 22;9(378):eaai8312. doi: 10.1126/scitranslmed.aai8312.
764 Cytotoxic T lymphocyte antigen 4 (CTLA4) gene polymorphism with bladder cancer risk in North Indian population.Mol Biol Rep. 2014 Feb;41(2):799-807. doi: 10.1007/s11033-013-2919-2. Epub 2014 Jan 4.
765 Role of a Kinesin Motor in Cancer Cell Mechanics.Nano Lett. 2019 Nov 13;19(11):7691-7702. doi: 10.1021/acs.nanolett.9b02592. Epub 2019 Oct 7.
766 A Histone Deacetylase Inhibitor, OBP-801, and Celecoxib Synergistically Inhibit the Cell Growth with Apoptosis via a DR5-Dependent Pathway in Bladder Cancer Cells.Mol Cancer Ther. 2016 Sep;15(9):2066-75. doi: 10.1158/1535-7163.MCT-16-0010. Epub 2016 Jul 12.
767 miR-5195-3p Inhibits Proliferation and Invasion of Human Bladder Cancer Cells by Directly Targeting Oncogene KLF5.Oncol Res. 2017 Aug 7;25(7):1081-1087. doi: 10.3727/096504016X14831120463349. Epub 2017 Jan 20.
768 The lncRNA ELF3-AS1 promotes bladder cancer progression by interaction with Krppel-like factor 8.Biochem Biophys Res Commun. 2019 Jan 15;508(3):762-768. doi: 10.1016/j.bbrc.2018.11.183. Epub 2018 Dec 7.
769 Increased expression of multidrug resistance-associated proteins in bladder cancer during clinical course and drug resistance to doxorubicin.Int J Cancer. 2002 Apr 1;98(4):630-5. doi: 10.1002/ijc.10246.
770 Downregulated KLK13 expression in bladder cancer highlights tumor aggressiveness and unfavorable patients' prognosis.J Cancer Res Clin Oncol. 2017 Mar;143(3):521-532. doi: 10.1007/s00432-016-2301-6. Epub 2016 Nov 17.
771 Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells.Eur Urol. 2017 Jan;71(1):8-12. doi: 10.1016/j.eururo.2016.06.025. Epub 2016 Jul 4.
772 Aberrant expression of KPNA2 is associated with a poor prognosis and contributes to OCT4 nuclear transportation in bladder cancer.Oncotarget. 2016 Nov 8;7(45):72767-72776. doi: 10.18632/oncotarget.11889.
773 Differential expression of cytokeratin 14 and 18 in bladder cancer tumorigenesis.Exp Biol Med (Maywood). 2018 Feb;243(4):344-349. doi: 10.1177/1535370218754493. Epub 2018 Jan 19.
774 Diagnostic accuracy of urine cytokeratin 20 for bladder cancer: A meta-analysis.Asia Pac J Clin Oncol. 2019 Apr;15(2):e11-e19. doi: 10.1111/ajco.13024. Epub 2018 Jun 22.
775 In stage pT1 non-muscle-invasive bladder cancer (NMIBC), high KRT20 and low KRT5 mRNA expression identify the luminal subtype and predict recurrence and survival.Virchows Arch. 2017 Mar;470(3):267-274. doi: 10.1007/s00428-017-2064-8. Epub 2017 Jan 10.
776 Detection and Clinical Significance of Circulating Tumor Cells in Patients Undergoing Radical Cystectomy for Urothelial Bladder Cancer.Clin Genitourin Cancer. 2017 Aug;15(4):455-462. doi: 10.1016/j.clgc.2016.11.005. Epub 2016 Dec 1.
777 Drug-induced keratin 9 interaction with Hsp70 in bladder cancer cells.Cell Stress Chaperones. 2018 Sep;23(5):1137-1142. doi: 10.1007/s12192-018-0913-2. Epub 2018 May 25.
778 Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells.Int J Oncol. 2017 Jan;50(1):263-271. doi: 10.3892/ijo.2016.3788. Epub 2016 Dec 5.
779 A Potent Chemotherapeutic Strategy with Eg5 Inhibitor against Gemcitabine Resistant Bladder Cancer.PLoS One. 2015 Dec 10;10(12):e0144484. doi: 10.1371/journal.pone.0144484. eCollection 2015.
780 Implication of vascular endothelial growth factor A and C in revealing diagnostic lymphangiogenic markers in node-positive bladder cancer.Oncotarget. 2017 Mar 28;8(13):21871-21883. doi: 10.18632/oncotarget.15669.
781 Suppression of LETM1 by siRNA inhibits cell proliferation and invasion of bladder cancer cells.Oncol Rep. 2017 Nov;38(5):2935-2940. doi: 10.3892/or.2017.5959. Epub 2017 Sep 18.
782 An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells.Mol Biosyst. 2017 Aug 22;13(9):1713-1721. doi: 10.1039/c7mb00354d.
783 Sensitizing effect of galectin-7 in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species.Cancer Res. 2007 Feb 1;67(3):1212-20. doi: 10.1158/0008-5472.CAN-06-3283.
784 Genetic variation in the base excision repair pathway and bladder cancer risk.Hum Genet. 2007 Apr;121(2):233-42. doi: 10.1007/s00439-006-0294-y. Epub 2007 Jan 3.
785 MacroH2A1 downregulation enhances the stem-like properties of bladder cancer cells by transactivation of Lin28B.Oncogene. 2016 Mar 10;35(10):1292-301. doi: 10.1038/onc.2015.187. Epub 2015 Jun 1.
786 Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One. 2012;7(4):e35175.
787 LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer.Cancer Res. 2007 May 1;67(9):4123-9. doi: 10.1158/0008-5472.CAN-07-0012. Epub 2007 Apr 24.
788 Lysyl oxidase family members in urological tumorigenesis and fibrosis.Oncotarget. 2018 Apr 13;9(28):20156-20164. doi: 10.18632/oncotarget.24948. eCollection 2018 Apr 13.
789 Leupaxin Promotes Bladder Cancer Proliferation, Metastasis, and Angiogenesis Through the PI3K/AKT Pathway.Cell Physiol Biochem. 2018;47(6):2250-2260. doi: 10.1159/000491536. Epub 2018 Jul 5.
790 Small Leucine Rich Proteoglycans (decorin, biglycan and lumican) in cancer.Clin Chim Acta. 2019 Apr;491:1-7. doi: 10.1016/j.cca.2019.01.003. Epub 2019 Jan 7.
791 Elevated TRIP13 drives cell proliferation and drug resistance in bladder cancer.Am J Transl Res. 2019 Jul 15;11(7):4397-4410. eCollection 2019.
792 MAN1B1 is associated with poor prognosis and modulates proliferation and apoptosis in bladder cancer.Gene. 2018 Dec 30;679:314-319. doi: 10.1016/j.gene.2018.09.022. Epub 2018 Sep 12.
793 STOP smoking and alcohol drinking before OPeration for bladder cancer ?the STOP-OP study),?perioperative smoking and alcohol cessation intervention in relation to radical cystectomy: study protocol for a randomised controlled trial.Trials. 2017 Jul 17;18(1):329. doi: 10.1186/s13063-017-2065-6.
794 X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism.Sci Adv. 2018 Jun 13;4(6):eaar5598. doi: 10.1126/sciadv.aar5598. eCollection 2018 Jun.
795 Gene Expression, DNA Methylation and Prognostic Significance of DNA Repair Genes in Human Bladder Cancer.Cell Physiol Biochem. 2017;42(6):2404-2417. doi: 10.1159/000480182. Epub 2017 Aug 21.
796 CD147 and MCT1-potential partners in bladder cancer aggressiveness and cisplatin resistance.Mol Carcinog. 2015 Nov;54(11):1451-66. doi: 10.1002/mc.22222. Epub 2014 Sep 27.
797 A novel antisense long noncoding RNA regulates the expression of MDC1 in bladder cancer.Oncotarget. 2015 Jan 1;6(1):484-93. doi: 10.18632/oncotarget.2861.
798 The knockdown of the Mediator complex subunit MED15 restrains urothelial bladder cancer cells' malignancy.Oncol Lett. 2018 Sep;16(3):3013-3021. doi: 10.3892/ol.2018.9014. Epub 2018 Jun 25.
799 Knockdown of mediator subunit Med19 suppresses bladder cancer cell proliferation and migration by downregulating Wnt/-catenin signalling pathway.J Cell Mol Med. 2017 Dec;21(12):3254-3263. doi: 10.1111/jcmm.13229. Epub 2017 Jun 19.
800 The Contrasting Role of the Mediator Subunit MED30 in the Progression of Bladder Cancer.Anticancer Res. 2017 Dec;37(12):6685-6695. doi: 10.21873/anticanres.12127.
801 MicroRNA-411 Downregulation Enhances Tumor Growth by Upregulating MLLT11 Expression in Human Bladder Cancer.Mol Ther Nucleic Acids. 2018 Jun 1;11:312-322. doi: 10.1016/j.omtn.2018.03.003. Epub 2018 Mar 10.
802 MMP23B expression and protein levels in blood and urine are associated with bladder cancer.Carcinogenesis. 2018 Oct 8;39(10):1254-1263. doi: 10.1093/carcin/bgy098.
803 Identification of biomarkers associated with progression and prognosis in bladder cancer via co-expression analysis.Cancer Biomark. 2019;24(2):183-193. doi: 10.3233/CBM-181940.
804 Motor neuron and pancreas homeobox1/HLXB9 promotes sustained proliferation in bladder cancer by upregulating CCNE1/2.J Exp Clin Cancer Res. 2018 Jul 16;37(1):154. doi: 10.1186/s13046-018-0829-9.
805 Deletions of p15 and p16 in schistosomal bladder cancer correlate with transforming growth factor-alpha expression.Clin Biochem. 2004 Dec;37(12):1098-104. doi: 10.1016/j.clinbiochem.2004.09.006.
806 Association of the PIG3 promoter polymorphism with invasive bladder cancer in a Japanese population.Jpn J Clin Oncol. 2006 Feb;36(2):116-20. doi: 10.1093/jjco/hyi225. Epub 2006 Jan 17.
807 Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background.PLoS One. 2012;7(1):e29396. doi: 10.1371/journal.pone.0029396. Epub 2012 Jan 4.
808 Reduced Expression of Metastasis Suppressor-1 (MTSS1) Accelerates Progression of Human Bladder Uroepithelium Cell Carcinoma.Anticancer Res. 2017 Aug;37(8):4499-4505. doi: 10.21873/anticanres.11846.
809 Loss of MTUS1/ATIP expression is associated with adverse outcome in advanced bladder carcinomas: data from a retrospective study.BMC Cancer. 2014 Mar 20;14:214. doi: 10.1186/1471-2407-14-214.
810 Variants of MUC5B minisatellites and the susceptibility of bladder cancer.DNA Cell Biol. 2009 Apr;28(4):169-76. doi: 10.1089/dna.2008.0827.
811 The value of combined use of survivin, cytokeratin 20 and mucin 7 mRNA for bladder cancer detection in voided urine.J Cancer Res Clin Oncol. 2008 Jun;134(6):659-65. doi: 10.1007/s00432-007-0331-9. Epub 2007 Nov 20.
812 The Association of MYNN and TERC Gene Polymorphisms and Bladder Cancer in a Turkish Population.Urol J. 2019 Feb 21;16(1):50-55. doi: 10.22037/uj.v0i0.4083.
813 Characterization of inflammasome-related genes in urine sediments of patients receiving intravesical BCG therapy.Urol Oncol. 2017 Dec;35(12):674.e19-674.e24. doi: 10.1016/j.urolonc.2017.08.004. Epub 2017 Sep 6.
814 Epithelial-mesenchymal transition promotes SOX2 and NANOG expression in bladder cancer.Lab Invest. 2017 May;97(5):567-576. doi: 10.1038/labinvest.2017.17. Epub 2017 Feb 27.
815 NBS1 Glu185Gln polymorphism and susceptibility to urinary system cancer: a meta-analysis.Tumour Biol. 2014 Nov;35(11):10723-9. doi: 10.1007/s13277-014-2346-6. Epub 2014 Jul 30.
816 LASP2 suppressed malignancy and Wnt/-catenin signaling pathway activation in bladder cancer.Exp Ther Med. 2018 Dec;16(6):5215-5223. doi: 10.3892/etm.2018.6836. Epub 2018 Oct 9.
817 Analysis of nm23 gene expressions in human bladder and renal cancers.Int J Urol. 1994 Dec;1(4):324-31. doi: 10.1111/j.1442-2042.1994.tb00058.x.
818 Neuromedin U is regulated by the metastasis suppressor RhoGDI2 and is a novel promoter of tumor formation, lung metastasis and cancer cachexia.Oncogene. 2007 Feb 1;26(5):765-73. doi: 10.1038/sj.onc.1209835. Epub 2006 Jul 31.
819 A novel human AlkB homologue, ALKBH8, contributes to human bladder cancer progression.Cancer Res. 2009 Apr 1;69(7):3157-64. doi: 10.1158/0008-5472.CAN-08-3530. Epub 2009 Mar 17.
820 Expression in bladder transitional cell carcinoma by real-time quantitative reverse transcription polymerase chain reaction array of 65 genes at the tumor suppressor locus 9q34.1-2: identification of 5 candidates tumor suppressor genes.Int J Cancer. 2004 Sep 10;111(4):539-42. doi: 10.1002/ijc.20283.
821 Nesfatin-1/Nucleobindin-2 Is a Potent Prognostic Marker and Enhances Cell Proliferation, Migration, and Invasion in Bladder Cancer.Dis Markers. 2018 Sep 19;2018:4272064. doi: 10.1155/2018/4272064. eCollection 2018.
822 Gene therapy of human bladder cancer with adenovirus-mediated antisense basic fibroblast growth factor.Clin Cancer Res. 2000 Nov;6(11):4422-31.
823 In silico design and in vitro characterization of a recombinant antigen for specific recognition of NMP22.Int J Biol Macromol. 2019 Nov 1;140:69-77. doi: 10.1016/j.ijbiomac.2019.08.065. Epub 2019 Aug 9.
824 Candidate of metastasis 1 regulates in vitro growth and invasion of bladder cancer cells.Int J Oncol. 2013 Apr;42(4):1249-56. doi: 10.3892/ijo.2013.1802. Epub 2013 Jan 29.
825 Prognostic value of opioid binding protein/cell adhesion molecule-like promoter methylation in bladder carcinoma.Eur J Cancer. 2011 May;47(7):1106-14. doi: 10.1016/j.ejca.2010.12.025. Epub 2011 Jan 25.
826 FGFR3, TERT and OTX1 as a Urinary Biomarker Combination for Surveillance of Patients with Bladder Cancer in a Large Prospective Multicenter Study.J Urol. 2017 Jun;197(6):1410-1418. doi: 10.1016/j.juro.2016.12.096. Epub 2016 Dec 31.
827 P3H4 is correlated with clinicopathological features and prognosis in bladder cancer.World J Surg Oncol. 2018 Oct 15;16(1):206. doi: 10.1186/s12957-018-1507-2.
828 Down-regulation of the ErbB3 binding protein 1 in human bladder cancer promotes tumor progression and cell proliferation.Mol Biol Rep. 2013 May;40(5):3799-805. doi: 10.1007/s11033-012-2458-2. Epub 2013 Jan 3.
829 PAK5 mediates cell: cell adhesion integrity via interaction with E-cadherin in bladder cancer cells.Biochem J. 2017 Mar 24;474(8):1333-1346. doi: 10.1042/BCJ20160875.
830 PBOV1 correlates with progression of ovarian cancer and inhibits proliferation of ovarian cancer cells.Oncol Rep. 2016 Jan;35(1):488-96. doi: 10.3892/or.2015.4396. Epub 2015 Nov 4.
831 Clinical and prognostic significance of protocadherin-10 (PCDH10) promoter methylation in bladder cancer.J Int Med Res. 2012;40(6):2117-23. doi: 10.1177/030006051204000609.
832 p53/PCDH17/Beclin-1 Proteins as Prognostic Predictors for Urinary Bladder Cancer.J Cancer. 2019 Oct 15;10(25):6207-6216. doi: 10.7150/jca.37335. eCollection 2019.
833 Modulation of Mutant Kras(G12D) -Driven Lung Tumorigenesis In Vivo by Gain or Loss of PCDH7 Function.Mol Cancer Res. 2019 Feb;17(2):594-603. doi: 10.1158/1541-7786.MCR-18-0739. Epub 2018 Nov 8.
834 Association between protocadherin 8 promoter hypermethylation and the pathological status of prostate cancer.Oncol Lett. 2017 Aug;14(2):1657-1664. doi: 10.3892/ol.2017.6282. Epub 2017 May 31.
835 miRNA?6a?p and miR?6b?p inhibit the proliferation of bladder cancer cells by regulating PDCD10.Oncol Rep. 2018 Dec;40(6):3523-3532. doi: 10.3892/or.2018.6734. Epub 2018 Sep 26.
836 Prognostic value of PDCD6 polymorphisms and the susceptibility to bladder cancer.Tumour Biol. 2014 Aug;35(8):7547-54. doi: 10.1007/s13277-014-2010-1. Epub 2014 May 3.
837 The Inhibitory Effect of PDIA6 Downregulation on Bladder Cancer Cell Proliferation and Invasion.Oncol Res. 2017 Apr 14;25(4):587-593. doi: 10.3727/096504016X14761811155298. Epub 2016 Oct 18.
838 The Role of Pyruvate Dehydrogenase Kinase-4 (PDK4) in Bladder Cancer and Chemoresistance.Mol Cancer Ther. 2018 Sep;17(9):2004-2012. doi: 10.1158/1535-7163.MCT-18-0063. Epub 2018 Jun 15.
839 Construction of a recombinant eukaryotic expression plasmid containing human PDLIM2 gene and its biological activity.Plasmid. 2011 Jul;66(2):106-11. doi: 10.1016/j.plasmid.2011.06.005. Epub 2011 Jul 19.
840 MicroRNA-214 suppresses oncogenesis and exerts impact on prognosis by targeting PDRG1 in bladder cancer.PLoS One. 2015 Feb 23;10(2):e0118086. doi: 10.1371/journal.pone.0118086. eCollection 2015.
841 Genetic alteration in phosphofructokinase family promotes growth of muscle-invasive bladder cancer.Int J Biol Markers. 2016 Jul 30;31(3):e286-93. doi: 10.5301/jbm.5000189.
842 Silencing of Profilin-1 suppresses cell adhesion and tumor growth via predicted alterations in integrin and Ca2+ signaling in T24M-based bladder cancer models.Oncotarget. 2016 Oct 25;7(43):70750-70768. doi: 10.18632/oncotarget.12218.
843 Proteomics identification of PGAM1 as a potential therapeutic target for urothelial bladder cancer.J Proteomics. 2016 Jan 30;132:85-92. doi: 10.1016/j.jprot.2015.11.027. Epub 2015 Dec 3.
844 Transcriptomic analysis of high-throughput sequencing about circRNA, lncRNA and mRNA in bladder cancer.Gene. 2018 Nov 30;677:189-197. doi: 10.1016/j.gene.2018.07.041. Epub 2018 Jul 17.
845 LncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting miR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer.Cancer Med. 2020 Jan;9(2):724-736. doi: 10.1002/cam4.2684. Epub 2019 Nov 25.
846 The increased expression of Piezo1 and Piezo2 ion channels in human and mouse bladder carcinoma.Adv Clin Exp Med. 2018 Aug;27(8):1025-1031. doi: 10.17219/acem/71080.
847 Dual Inhibition of PIK3C3 and FGFR as a New Therapeutic Approach to Treat Bladder Cancer.Clin Cancer Res. 2018 Mar 1;24(5):1176-1189. doi: 10.1158/1078-0432.CCR-17-2066. Epub 2017 Dec 8.
848 A DNA hypermethylation profile reveals new potential biomarkers for the evaluation of prognosis in urothelial bladder cancer.APMIS. 2017 Sep;125(9):787-796. doi: 10.1111/apm.12719. Epub 2017 Jun 6.
849 Piwil 2 expression is correlated with disease-specific and progression-free survival of chemotherapy-treated bladder cancer patients.Mol Med. 2015 May 13;21(1):371-80. doi: 10.2119/molmed.2014.00250.
850 Up-regulation of plakophilin-2 and Down-regulation of plakophilin-3 are correlated with invasiveness in bladder cancer.Urology. 2012 Jan;79(1):240.e1-8. doi: 10.1016/j.urology.2011.08.049. Epub 2011 Nov 25.
851 RNA interference suppressing PLCE1 gene expression decreases invasive power of human bladder cancer T24 cell line.Cancer Genet Cytogenet. 2010 Jul 15;200(2):110-9. doi: 10.1016/j.cancergencyto.2010.01.021.
852 Apoptin induces apoptosis in human bladder cancer EJ and BIU-87 cells.Asian Pac J Cancer Prev. 2012;13(1):135-8. doi: 10.7314/apjcp.2012.13.1.135.
853 Bioplasmonic paper-based assay for perilipin-2 non-invasively detects renal cancer.Kidney Int. 2019 Dec;96(6):1417-1421. doi: 10.1016/j.kint.2019.08.020. Epub 2019 Sep 3.
854 Polyamine-modulated factor-1 methylation predicts Bacillus Calmette-Gurin response in patients with high-grade non-muscle-invasive bladder carcinoma.Eur Urol. 2013 Feb;63(2):364-70. doi: 10.1016/j.eururo.2012.05.050. Epub 2012 Jun 5.
855 Overexpressed DNA polymerase iota regulated by JNK/c-Jun contributes to hypermutagenesis in bladder cancer.PLoS One. 2013 Jul 26;8(7):e69317. doi: 10.1371/journal.pone.0069317. Print 2013.
856 An epigenetic biomarker combination of PCDH17 and POU4F2 detects bladder cancer accurately by methylation analyses of urine sediment DNA in Han Chinese.Oncotarget. 2016 Jan 19;7(3):2754-64. doi: 10.18632/oncotarget.6666.
857 Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer.Oncotarget. 2017 May 9;8(19):30844-30858. doi: 10.18632/oncotarget.9602.
858 Variations in CYP isoforms and bladder cancer: a superfamily paradigm.Urol Oncol. 2014 Jan;32(1):28.e33-40. doi: 10.1016/j.urolonc.2012.10.005. Epub 2013 Feb 19.
859 miR-186 downregulates protein phosphatase PPM1B in bladder cancer and mediates G1-S phase transition.Tumour Biol. 2016 Apr;37(4):4331-41. doi: 10.1007/s13277-015-4117-4. Epub 2015 Oct 23.
860 Mutation analysis of 8p genes POLB and PPP2CB in bladder cancer.Cancer Genet Cytogenet. 1997 Feb;93(2):167-71. doi: 10.1016/s0165-4608(96)00200-2.
861 Genetic Variations in the 3'-untranslated Regions of Genes Involved in the Cell Cycle and Apoptosis Pathways Affect Bladder Cancer Risk.Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):67-72. doi: 10.21873/cgp.20066.
862 Prima-1 induces apoptosis in bladder cancer cell lines by activating p53.Clinics (Sao Paulo). 2013;68(3):297-303. doi: 10.6061/clinics/2013(03)oa03.
863 BET inhibitor JQ1 suppresses cell proliferation via inducing autophagy and activating LKB1/AMPK in bladder cancer cells.Cancer Med. 2019 Aug;8(10):4792-4805. doi: 10.1002/cam4.2385. Epub 2019 Jun 28.
864 LncRNA RP11-79H23.3 Functions as a Competing Endogenous RNA to Regulate PTEN Expression through Sponging hsa-miR-107 in the Development of Bladder Cancer.Int J Mol Sci. 2018 Aug 26;19(9):2531. doi: 10.3390/ijms19092531.
865 KIAA1096, a gene on chromosome 1q, is amplified and overexpressed in bladder cancer.DNA Cell Biol. 2002 Oct;21(10):707-15. doi: 10.1089/104454902760599681.
866 Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis. 2006 Jan;27(1):112-6. doi: 10.1093/carcin/bgi172. Epub 2005 Jun 29.
867 Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis.Mol Cancer. 2018 Oct 3;17(1):144. doi: 10.1186/s12943-018-0892-z.
868 Rab11 Functions as an Oncoprotein via Nuclear Factor kappa B (NF-B) Signaling Pathway in Human Bladder Carcinoma.Med Sci Monit. 2018 Jul 22;24:5093-5101. doi: 10.12659/MSM.911454.
869 Overexpression of Rab25 contributes to metastasis of bladder cancer through induction of epithelial-mesenchymal transition and activation of Akt/GSK-3/Snail signaling.Carcinogenesis. 2013 Oct;34(10):2401-8. doi: 10.1093/carcin/bgt187. Epub 2013 May 30.
870 Rab27A overexpression promotes bladder cancer proliferation and chemoresistance through regulation of NF-B signaling.Oncotarget. 2017 Sep 8;8(43):75272-75283. doi: 10.18632/oncotarget.20775. eCollection 2017 Sep 26.
871 Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties.Cancer Res. 2014 Oct 15;74(20):5758-71. doi: 10.1158/0008-5472.CAN-13-3512. Epub 2014 Sep 26.
872 Inhibition of miR-1247 on cell proliferation and invasion in bladder cancer through its downstream target of RAB36.J Biosci. 2018 Jun;43(2):365-373.
873 Urinary retinoic acid receptor-2 gene promoter methylation and hyaluronidase activity as noninvasive tests for diagnosis of bladder cancer.Clin Biochem. 2012 Apr;45(6):402-7. doi: 10.1016/j.clinbiochem.2012.01.010. Epub 2012 Jan 18.
874 RalGPS2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells.Exp Cell Res. 2018 Jan 15;362(2):349-361. doi: 10.1016/j.yexcr.2017.11.036. Epub 2017 Dec 6.
875 MiR-194 inhibits cell proliferation and invasion via repression of RAP2B in bladder cancer.Biomed Pharmacother. 2016 May;80:268-275. doi: 10.1016/j.biopha.2016.03.026. Epub 2016 Apr 1.
876 Hypermethylation of cell-free serum DNA indicates worse outcome in patients with bladder cancer.J Urol. 2008 Jan;179(1):346-52. doi: 10.1016/j.juro.2007.08.091. Epub 2007 Nov 19.
877 RASAL2 inhibits tumor angiogenesis via p-AKT/ETS1 signaling in bladder cancer.Cell Signal. 2018 Aug;48:38-44. doi: 10.1016/j.cellsig.2018.04.006. Epub 2018 Apr 24.
878 HRAS1 variable number of tandem repeats polymorphism and risk of bladder cancer.Int J Cancer. 2002 Aug 1;100(4):414-8. doi: 10.1002/ijc.10497.
879 Detection of LOH of the RB1 gene in bladder cancers by PCR-RFLP.Urol Int. 2002;68(3):189-92. doi: 10.1159/000048448.
880 CpG hypermethylation of cellular retinol-binding protein 1 contributes to cell proliferation and migration in bladder cancer.Int J Oncol. 2010 Dec;37(6):1379-88. doi: 10.3892/ijo_00000789.
881 Regulator of cullins-1 expression knockdown suppresses the malignant progression of muscle-invasive transitional cell carcinoma by regulating mTOR/DEPTOR pathway.Br J Cancer. 2016 Feb 2;114(3):305-13. doi: 10.1038/bjc.2015.444. Epub 2016 Jan 7.
882 Upregulated expression of polycomb protein Ring1 contributes to poor prognosis and accelerated proliferation in human hepatocellular carcinoma.Tumour Biol. 2015 Dec;36(12):9579-88. doi: 10.1007/s13277-015-3721-7. Epub 2015 Jul 4.
883 Association of prostatic inflammation with down-regulation of macrophage inhibitory cytokine-1 gene in symptomatic benign prostatic hyperplasia.J Urol. 2004 Jun;171(6 Pt 1):2330-5. doi: 10.1097/01.ju.0000127760.87421.e9.
884 Adenovirus-mediated downregulation of the ubiquitin ligase RNF8 sensitizes bladder cancer to radiotherapy.Oncotarget. 2016 Feb 23;7(8):8956-67. doi: 10.18632/oncotarget.6909.
885 RSPH9 methylation pattern as a prognostic indicator in patients with non-muscle invasive bladder cancer.Oncol Rep. 2016 Feb;35(2):1195-203. doi: 10.3892/or.2015.4409. Epub 2015 Nov 11.
886 Silencing of RTKN2 by siRNA suppresses proliferation, and induces G1 arrest and apoptosis in human bladder cancer cells.Mol Med Rep. 2016 Jun;13(6):4872-8. doi: 10.3892/mmr.2016.5127. Epub 2016 Apr 14.
887 C14orf166 is a high-risk biomarker for bladder cancer and promotes bladder cancer cell proliferation.J Transl Med. 2016 Feb 23;14:55. doi: 10.1186/s12967-016-0801-4.
888 Gene Expression Profile of the Clinically Aggressive Micropapillary Variant of Bladder Cancer.Eur Urol. 2016 Oct;70(4):611-620. doi: 10.1016/j.eururo.2016.02.056. Epub 2016 Mar 15.
889 S100A16 regulated by Snail promotes the chemoresistance of nonmuscle invasive bladder cancer through the AKT/Bcl-2 pathway.Cancer Manag Res. 2019 Mar 27;11:2449-2456. doi: 10.2147/CMAR.S196450. eCollection 2019.
890 Psoriasin (S100A7) is significantly up-regulated in human epithelial skin tumours.J Cancer Res Clin Oncol. 2007 Apr;133(4):253-61. doi: 10.1007/s00432-006-0164-y. Epub 2006 Nov 29.
891 HAF drives the switch of HIF-1 to HIF-2 by activating the NF-B pathway, leading to malignant behavior of T24 bladder cancer cells.Int J Oncol. 2014 Feb;44(2):393-402. doi: 10.3892/ijo.2013.2210. Epub 2013 Dec 6.
892 Level of selenoprotein transcripts in peripheral leukocytes of patients with bladder cancer and healthy individuals.Clin Chem Lab Med. 2009;47(9):1125-32. doi: 10.1515/CCLM.2009.261.
893 Long non-coding RNA XIST promotes cell proliferation and migration through targeting miR-133a in bladder cancer.Exp Ther Med. 2019 Nov;18(5):3475-3483. doi: 10.3892/etm.2019.7960. Epub 2019 Aug 29.
894 SENP2 suppresses epithelial-mesenchymal transition of bladder cancer cells through deSUMOylation of TGF-RI.Mol Carcinog. 2017 Oct;56(10):2332-2341. doi: 10.1002/mc.22687. Epub 2017 Jun 30.
895 SETD6 regulates NF-B signaling in urothelial cell survival: Implications for bladder cancer.Oncotarget. 2017 Feb 28;8(9):15114-15125. doi: 10.18632/oncotarget.14750.
896 DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection.BMC Cancer. 2008 Aug 14;8:238. doi: 10.1186/1471-2407-8-238.
897 MiR-1-3p Suppresses the Proliferation, Invasion and Migration of Bladder Cancer Cells by Up-Regulating SFRP1 Expression.Cell Physiol Biochem. 2017;41(3):1179-1188. doi: 10.1159/000464379. Epub 2017 Mar 6.
898 Glucocorticoid-Inducible Kinase 2 Promotes Bladder Cancer Cell Proliferation, Migration and Invasion by Enhancing -catenin/c-Myc Signaling Pathway.J Cancer. 2018 Dec 10;9(24):4774-4782. doi: 10.7150/jca.25811. eCollection 2018.
899 SH3BGRL3 Protein as a Potential Prognostic Biomarker for Urothelial Carcinoma: A Novel Binding Partner of Epidermal Growth Factor Receptor.Clin Cancer Res. 2015 Dec 15;21(24):5601-11. doi: 10.1158/1078-0432.CCR-14-3308. Epub 2015 Aug 18.
900 Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer.Genomics. 1997 Sep 1;44(2):163-70. doi: 10.1006/geno.1997.4849.
901 Hsa-miR-125b suppresses bladder cancer development by down-regulating oncogene SIRT7 and oncogenic long non-coding RNA MALAT1.FEBS Lett. 2013 Nov 29;587(23):3875-82.
902 High expression of spindle and kinetochore- associated protein 1 predicts early recurrence and progression of non-muscle invasive bladder cancer.Cancer Biomark. 2018;22(3):543-549. doi: 10.3233/CBM-181202.
903 Expression of proteins FGFR3, PI3K, AKT, p21Waf1/Cip1 and cyclins D1 and D3 in patients with T1 bladder tumours: clinical implications and prognostic significance.Actas Urol Esp. 2017 Apr;41(3):172-180. doi: 10.1016/j.acuro.2016.09.003. Epub 2016 Oct 7.
904 When the guardian sleeps: Reactivation of the p53 pathway in cancer.Mutat Res Rev Mutat Res. 2017 Jul;773:1-13. doi: 10.1016/j.mrrev.2017.02.003. Epub 2017 Feb 17.
905 Genetic variants in the death receptor 4 gene contribute to susceptibility to bladder cancer.Mutat Res. 2009 Feb 10;661(1-2):85-92. doi: 10.1016/j.mrfmmm.2008.11.009. Epub 2008 Nov 25.
906 Long noncoding RNA neuroblastoma-associated transcript 1 gene inhibits malignant cellular phenotypes of bladder cancer through miR-21/SOCS6 axis.Cell Death Dis. 2018 Oct 11;9(10):1042. doi: 10.1038/s41419-018-1090-z.
907 SORLA regulates endosomal trafficking and oncogenic fitness of HER2.Nat Commun. 2019 May 28;10(1):2340. doi: 10.1038/s41467-019-10275-0.
908 Circular RNA CEP128 acts as a sponge of miR-145-5p in promoting the bladder cancer progression via regulating SOX11.Mol Med. 2018 Jul 31;24(1):40. doi: 10.1186/s10020-018-0039-0.
909 Decreased expression of SRY-box containing gene 30 is related to malignant phenotypes of human bladder cancer and correlates with poor prognosis.BMC Cancer. 2018 Jun 7;18(1):642. doi: 10.1186/s12885-018-4560-x.
910 SOX4 regulates invasion of bladder cancer cells via repression of WNT5a.Int J Oncol. 2019 Aug;55(2):359-370. doi: 10.3892/ijo.2019.4832. Epub 2019 Jun 26.
911 Sperm associated antigen 9 plays an important role in bladder transitional cell carcinoma.PLoS One. 2013 Dec 9;8(12):e81348. doi: 10.1371/journal.pone.0081348. eCollection 2013.
912 Prognostic value of the combined expression of tumor-associated trypsin inhibitor (TATI) and p53 in patients with bladder cancer undergoing radical cystectomy.Cancer Biomark. 2019;26(3):281-289. doi: 10.3233/CBM-182143.
913 SPOCD1 promotes cell proliferation and inhibits cell apoptosis in human osteosarcoma.Mol Med Rep. 2018 Feb;17(2):3218-3225. doi: 10.3892/mmr.2017.8263. Epub 2017 Dec 12.
914 Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1.J Biol Chem. 2014 Apr 18;289(16):11219-11229. doi: 10.1074/jbc.M113.535989. Epub 2014 Feb 28.
915 Sorcin a Potential Molecular Target for Cancer Therapy.Transl Oncol. 2018 Dec;11(6):1379-1389. doi: 10.1016/j.tranon.2018.08.015. Epub 2018 Sep 11.
916 Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer.Biochem Biophys Res Commun. 2012 Jan 6;417(1):588-93. doi: 10.1016/j.bbrc.2011.12.011. Epub 2011 Dec 9.
917 Oxidative damage and response to Bacillus Calmette-Gurin in bladder cancer cells expressing sialyltransferase ST3GAL1.BMC Cancer. 2018 Feb 17;18(1):198. doi: 10.1186/s12885-018-4107-1.
918 Epigenetic inactivation of ST6GAL1 in human bladder cancer.BMC Cancer. 2014 Dec 2;14:901. doi: 10.1186/1471-2407-14-901.
919 Expression of sialyl-Tn sugar antigen in bladder cancer cells affects response to Bacillus Calmette Gurin (BCG) and to oxidative damage.Oncotarget. 2017 Apr 17;8(33):54506-54517. doi: 10.18632/oncotarget.17138. eCollection 2017 Aug 15.
920 Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts.Elife. 2017 Jul 10;6:e26980. doi: 10.7554/eLife.26980.
921 The role of STAG2 in bladder cancer.Pharmacol Res. 2018 May;131:143-149. doi: 10.1016/j.phrs.2018.02.025. Epub 2018 Mar 1.
922 Biophysical Characterization of SG2NA Variants and their Interaction with DJ-1 and Calmodulin in vitro.Cell Biochem Biophys. 2018 Dec;76(4):451-461. doi: 10.1007/s12013-018-0854-5. Epub 2018 Aug 21.
923 HIF-1/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer.Oncol Rep. 2016 Mar;35(3):1549-56. doi: 10.3892/or.2015.4536. Epub 2015 Dec 29.
924 The bladder tumor suppressor protein TERE1 (UBIAD1) modulates cell cholesterol: implications for tumor progression.DNA Cell Biol. 2011 Nov;30(11):851-64. doi: 10.1089/dna.2011.1315. Epub 2011 Jul 8.
925 Stratification based on methylation of TBX2 and TBX3 into three molecular grades predicts progression in patients with pTa-bladder cancer.Mod Pathol. 2015 Apr;28(4):515-22. doi: 10.1038/modpathol.2014.145. Epub 2014 Nov 14.
926 TCF21 and PCDH17 methylation: An innovative panel of biomarkers for a simultaneous detection of urological cancers.Epigenetics. 2011 Sep 1;6(9):1120-30. doi: 10.4161/epi.6.9.16376. Epub 2011 Sep 1.
927 Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma.Oncotarget. 2016 Jul 26;7(30):47186-47200. doi: 10.18632/oncotarget.9706.
928 Antitumor Activity and Mechanistic Characterization of APE1/Ref-1 Inhibitors in Bladder Cancer.Mol Cancer Ther. 2019 Nov;18(11):1947-1960. doi: 10.1158/1535-7163.MCT-18-1166. Epub 2019 Aug 14.
929 Testis expressed 19 is a novel cancer-testis antigen expressed in bladder cancer.Tumour Biol. 2016 Jun;37(6):7757-65. doi: 10.1007/s13277-015-4567-8. Epub 2015 Dec 22.
930 Long non-coding RNA DILC suppresses bladder cancer cells progression.Gene. 2019 Aug 20;710:193-201. doi: 10.1016/j.gene.2019.06.009. Epub 2019 Jun 7.
931 MMP-2 and MMP-9 as prognostic markers for the early detection of urinary bladder cancer.J Biochem Mol Toxicol. 2019 Apr;33(4):e22275. doi: 10.1002/jbt.22275. Epub 2018 Dec 10.
932 Tight Junction Protein 1 Dysfunction Contributes to Cell Motility in Bladder Cancer.Anticancer Res. 2018 Aug;38(8):4607-4615. doi: 10.21873/anticanres.12765.
933 Novel oncogenic function of mesoderm development candidate 1 and its regulation by MiR-574-3p in bladder cancer cell lines.Int J Oncol. 2012 Apr;40(4):951-9. doi: 10.3892/ijo.2011.1294. Epub 2011 Dec 13.
934 Association between C13ORF31, NOD2, RIPK2 and TLR10 polymorphisms and urothelial bladder cancer.Hum Immunol. 2012 Jun;73(6):668-72. doi: 10.1016/j.humimm.2012.03.006. Epub 2012 Apr 12.
935 Aberrant DNA methylation of T-cell leukemia, homeobox 3 modulates cisplatin sensitivity in bladder cancer.Int J Oncol. 2011 Sep;39(3):727-33. doi: 10.3892/ijo.2011.1049. Epub 2011 May 23.
936 TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPAR-SIRT1 feedback loop in human bladder cancer cells.Cancer Lett. 2018 Feb 1;414:278-293. doi: 10.1016/j.canlet.2017.11.015. Epub 2017 Nov 24.
937 Accurate detection of upper tract urothelial carcinoma in tissue and urine by means of quantitative GDF15, TMEFF2 and VIM promoter methylation.Eur J Cancer. 2014 Jan;50(1):226-33. doi: 10.1016/j.ejca.2013.08.025. Epub 2013 Oct 4.
938 Modification of Occupational Exposures on Bladder Cancer Risk by Common Genetic Polymorphisms.J Natl Cancer Inst. 2015 Sep 14;107(11):djv223. doi: 10.1093/jnci/djv223. Print 2015 Nov.
939 High expression of TMEM40 is associated with the malignant behavior and tumorigenesis in bladder cancer.J Transl Med. 2018 Jan 19;16(1):9. doi: 10.1186/s12967-017-1377-3.
940 A placebo-controlled efficacy study of the intravesical immunomodulators TMX-101 and TMX-202 in an orthotopic bladder cancer rat model.World J Urol. 2018 Nov;36(11):1719-1725. doi: 10.1007/s00345-018-2334-3. Epub 2018 May 16.
941 Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types.Int J Cancer. 2004 May 1;109(5):786-92. doi: 10.1002/ijc.20041.
942 Association between polymorphisms in RMI1, TOP3A, and BLM and risk of cancer, a case-control study.BMC Cancer. 2009 May 11;9:140. doi: 10.1186/1471-2407-9-140.
943 GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer.Crit Rev Biochem Mol Biol. 2013 Sep-Oct;48(5):446-64. doi: 10.3109/10409238.2013.831024. Epub 2013 Aug 27.
944 ATDC mediates a TP63-regulated basal cancer invasive program.Oncogene. 2019 May;38(18):3340-3354. doi: 10.1038/s41388-018-0646-9. Epub 2019 Jan 14.
945 Gain of 5p15.33 is associated with progression of bladder cancer.Oncology. 2007;72(1-2):132-8. doi: 10.1159/000111132. Epub 2007 Nov 15.
946 TRIO amplification and abundant mRNA expression is associated with invasive tumor growth and rapid tumor cell proliferation in urinary bladder cancer.Am J Pathol. 2004 Jul;165(1):63-9. doi: 10.1016/S0002-9440(10)63275-0.
947 Expression of Testis-Specific Gene Antigen 10 (TSGA10) is Associated with Apoptosis and Cell Migration in Bladder Cancer Cells and Tumor Stage and Overall Survival in Patients with Bladder Cancer.Med Sci Monit. 2019 Jul 16;25:5289-5298. doi: 10.12659/MSM.915682.
948 An inverse relationship between KAI1 expression, invasive ability, and MMP-2 expression and activity in bladder cancer cell lines.Urol Oncol. 2012 Jul-Aug;30(4):502-8. doi: 10.1016/j.urolonc.2010.02.013. Epub 2010 Sep 22.
949 Allele-specific methylation analysis on upstream promoter region of H19 by methylation-specific PCR with confronting two-pair primers.Int J Oncol. 2004 Nov;25(5):1273-8.
950 N-(4-hydroxyphenyl)retinamide (4-HPR) modulates GADD45 expression in radiosensitive bladder cancer cell lines.Cancer Lett. 2002 Jun 28;180(2):131-7. doi: 10.1016/s0304-3835(01)00864-3.
951 Significant antitumoral activity of cationic multilamellar liposomes containing human IFN-beta gene against human renal cell carcinoma.Clin Cancer Res. 2003 Mar;9(3):1129-35.
952 Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst. 2004 Mar 3;96(5):357-63. doi: 10.1093/jnci/djh058.
953 Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer.Cancer Lett. 2005 Jul 8;225(1):121-30. doi: 10.1016/j.canlet.2004.10.047. Epub 2004 Dec 10.
954 Prediction and diagnosis of bladder cancer recurrence based on urinary content of hTERT, SENP1, PPP1CA, and MCM5 transcripts.BMC Cancer. 2010 Nov 24;10:646. doi: 10.1186/1471-2407-10-646.
955 Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration.Oncogene. 2008 Nov 6;27(52):6679-89. doi: 10.1038/onc.2008.264. Epub 2008 Aug 25.
956 Urinary NID2 and TWIST1 methylation to augment conventional urine cytology for the detection of bladder cancer.Cancer Biomark. 2017;18(4):381-387. doi: 10.3233/CBM-160261.
957 Detection of circulating MUC7-positive cells by reverse transcription-polymerase chain reaction in bladder cancer patients.Int J Urol. 2004 Jan;11(1):38-43. doi: 10.1111/j.1442-2042.2004.00739.x.
958 Gene expression study of Aurora-A reveals implication during bladder carcinogenesis and increasing values in invasive urothelial cancer.Urology. 2008 Oct;72(4):873-7. doi: 10.1016/j.urology.2007.12.026. Epub 2008 May 15.