General Information of Drug Off-Target (DOT) (ID: OTGSKLL8)

DOT Name Sodium channel protein type 9 subunit alpha (SCN9A)
Synonyms Neuroendocrine sodium channel; hNE-Na; Peripheral sodium channel 1; PN1; Sodium channel protein type IX subunit alpha; Voltage-gated sodium channel subunit alpha Nav1.7
Gene Name SCN9A
Related Disease
Primary erythermalgia ( )
Channelopathy-associated congenital insensitivity to pain, autosomal recessive ( )
Generalized epilepsy with febrile seizures plus, type 7 ( )
Paroxysmal extreme pain disorder ( )
Hereditary sensory and autonomic neuropathy type 2 ( )
Obsolete sodium channelopathy-related small fiber neuropathy ( )
Epilepsy ( )
UniProt ID
SCN9A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5EK0 ; 6J8G ; 6J8H ; 6J8I ; 6J8J ; 6N4Q ; 6N4R ; 6NT3 ; 6NT4 ; 6VXO ; 6W6O ; 7K48 ; 7W9K ; 7W9L ; 7W9M ; 7W9P ; 7W9T ; 7XM9 ; 7XMF ; 7XMG ; 7XVE ; 7XVF ; 8F0P ; 8F0Q ; 8F0R ; 8F0S ; 8G1A ; 8I5B ; 8I5G ; 8I5X ; 8I5Y ; 8J4F ; 8S9B ; 8S9C ; 8THG ; 8THH
Pfam ID
PF00520 ; PF06512 ; PF11933
Sequence
MAMLPPPGPQSFVHFTKQSLALIEQRIAERKSKEPKEEKKDDDEEAPKPSSDLEAGKQLP
FIYGDIPPGMVSEPLEDLDPYYADKKTFIVLNKGKTIFRFNATPALYMLSPFSPLRRISI
KILVHSLFSMLIMCTILTNCIFMTMNNPPDWTKNVEYTFTGIYTFESLVKILARGFCVGE
FTFLRDPWNWLDFVVIVFAYLTEFVNLGNVSALRTFRVLRALKTISVIPGLKTIVGALIQ
SVKKLSDVMILTVFCLSVFALIGLQLFMGNLKHKCFRNSLENNETLESIMNTLESEEDFR
KYFYYLEGSKDALLCGFSTDSGQCPEGYTCVKIGRNPDYGYTSFDTFSWAFLALFRLMTQ
DYWENLYQQTLRAAGKTYMIFFVVVIFLGSFYLINLILAVVAMAYEEQNQANIEEAKQKE
LEFQQMLDRLKKEQEEAEAIAAAAAEYTSIRRSRIMGLSESSSETSKLSSKSAKERRNRR
KKKNQKKLSSGEEKGDAEKLSKSESEDSIRRKSFHLGVEGHRRAHEKRLSTPNQSPLSIR
GSLFSARRSSRTSLFSFKGRGRDIGSETEFADDEHSIFGDNESRRGSLFVPHRPQERRSS
NISQASRSPPMLPVNGKMHSAVDCNGVVSLVDGRSALMLPNGQLLPEVIIDKATSDDSGT
TNQIHKKRRCSSYLLSEDMLNDPNLRQRAMSRASILTNTVEELEESRQKCPPWWYRFAHK
FLIWNCSPYWIKFKKCIYFIVMDPFVDLAITICIVLNTLFMAMEHHPMTEEFKNVLAIGN
LVFTGIFAAEMVLKLIAMDPYEYFQVGWNIFDSLIVTLSLVELFLADVEGLSVLRSFRLL
RVFKLAKSWPTLNMLIKIIGNSVGALGNLTLVLAIIVFIFAVVGMQLFGKSYKECVCKIN
DDCTLPRWHMNDFFHSFLIVFRVLCGEWIETMWDCMEVAGQAMCLIVYMMVMVIGNLVVL
NLFLALLLSSFSSDNLTAIEEDPDANNLQIAVTRIKKGINYVKQTLREFILKAFSKKPKI
SREIRQAEDLNTKKENYISNHTLAEMSKGHNFLKEKDKISGFGSSVDKHLMEDSDGQSFI
HNPSLTVTVPIAPGESDLENMNAEELSSDSDSEYSKVRLNRSSSSECSTVDNPLPGEGEE
AEAEPMNSDEPEACFTDGCVWRFSCCQVNIESGKGKIWWNIRKTCYKIVEHSWFESFIVL
MILLSSGALAFEDIYIERKKTIKIILEYADKIFTYIFILEMLLKWIAYGYKTYFTNAWCW
LDFLIVDVSLVTLVANTLGYSDLGPIKSLRTLRALRPLRALSRFEGMRVVVNALIGAIPS
IMNVLLVCLIFWLIFSIMGVNLFAGKFYECINTTDGSRFPASQVPNRSECFALMNVSQNV
RWKNLKVNFDNVGLGYLSLLQVATFKGWTIIMYAAVDSVNVDKQPKYEYSLYMYIYFVVF
IIFGSFFTLNLFIGVIIDNFNQQKKKLGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRP
GNKIQGCIFDLVTNQAFDISIMVLICLNMVTMMVEKEGQSQHMTEVLYWINVVFIILFTG
ECVLKLISLRHYYFTVGWNIFDFVVVIISIVGMFLADLIETYFVSPTLFRVIRLARIGRI
LRLVKGAKGIRTLLFALMMSLPALFNIGLLLFLVMFIYAIFGMSNFAYVKKEDGINDMFN
FETFGNSMICLFQITTSAGWDGLLAPILNSKPPDCDPKKVHPGSSVEGDCGNPSVGIFYF
VSYIIISFLVVVNMYIAVILENFSVATEESTEPLSEDDFEMFYEVWEKFDPDATQFIEFS
KLSDFAAALDPPLLIAKPNKVQLIAMDLPMVSGDRIHCLDILFAFTKRVLGESGEMDSLR
SQMEERFMSANPSKVSYEPITTTLKRKQEDVSATVIQRAYRRYRLRQNVKNISSIYIKDG
DRDDDLLNKKDMAFDNVNENSSPEKTDATSSTTSPPSYDSVTKPDKEKYEQDRTEKEDKG
KDSKESKK
Function
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain.
Tissue Specificity
Expressed strongly in dorsal root ganglion, with only minor levels elsewhere in the body, smooth muscle cells, MTC cell line and C-cell carcinoma. Also expressed in vagus nerves within the head and neck region . Isoform 1 is expressed preferentially in the central and peripheral nervous system. Isoform 2 is expressed preferentially in the dorsal root ganglion.
KEGG Pathway
Taste transduction (hsa04742 )
Reactome Pathway
Phase 0 - rapid depolarisation (R-HSA-5576892 )
Sensory perception of sweet, bitter, and umami (glutamate) taste (R-HSA-9717207 )
Interaction between L1 and Ankyrins (R-HSA-445095 )

Molecular Interaction Atlas (MIA) of This DOT

7 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Primary erythermalgia DISRR1LN Definitive Autosomal dominant [1]
Channelopathy-associated congenital insensitivity to pain, autosomal recessive DISJ1NV4 Strong Autosomal recessive [2]
Generalized epilepsy with febrile seizures plus, type 7 DIS2C0N3 Strong Autosomal dominant [3]
Paroxysmal extreme pain disorder DISNHO6B Strong Autosomal dominant [4]
Hereditary sensory and autonomic neuropathy type 2 DIS4TP1G Supportive Autosomal recessive [5]
Obsolete sodium channelopathy-related small fiber neuropathy DISQL23S Supportive Autosomal dominant [6]
Epilepsy DISBB28L Limited Autosomal dominant [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Carbamazepine DMZOLBI Approved Sodium channel protein type 9 subunit alpha (SCN9A) affects the response to substance of Carbamazepine. [4]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [8]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [9]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [10]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [12]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [13]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [14]
Cannabidiol DM0659E Approved Cannabidiol decreases the activity of Sodium channel protein type 9 subunit alpha (SCN9A). [15]
Malathion DMXZ84M Approved Malathion decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [16]
Permethrin DMZ0Q1G Approved Permethrin decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [16]
Tetrodotoxin DMWMPRG Approved Tetrodotoxin decreases the activity of Sodium channel protein type 9 subunit alpha (SCN9A). [17]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [19]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [20]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [23]
Butanoic acid DMTAJP7 Investigative Butanoic acid decreases the expression of Sodium channel protein type 9 subunit alpha (SCN9A). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Sodium channel protein type 9 subunit alpha (SCN9A). [21]
------------------------------------------------------------------------------------

References

1 Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. 2004 Mar;41(3):171-4. doi: 10.1136/jmg.2003.012153.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet. 2009 Sep;5(9):e1000649. doi: 10.1371/journal.pgen.1000649. Epub 2009 Sep 18.
4 SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron. 2006 Dec 7;52(5):767-74. doi: 10.1016/j.neuron.2006.10.006.
5 Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology. 2013 Apr 30;80(18):1641-9. doi: 10.1212/WNL.0b013e3182904fdd. Epub 2013 Apr 17.
6 Gain of function Na1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol. 2012 Jan;71(1):26-39. doi: 10.1002/ana.22485. Epub 2011 Jun 22.
7 Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J. 1995 Mar 15;14(6):1084-90. doi: 10.1002/j.1460-2075.1995.tb07091.x.
8 The neuroprotective action of the mood stabilizing drugs lithium chloride and sodium valproate is mediated through the up-regulation of the homeodomain protein Six1. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):124-34.
9 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
10 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Inhibitory effects of cannabidiol on voltage-dependent sodium currents. J Biol Chem. 2018 Oct 26;293(43):16546-16558. doi: 10.1074/jbc.RA118.004929. Epub 2018 Sep 14.
16 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
17 The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Na(v1.6) voltage-dependent sodium channel. Am J Physiol Cell Physiol. 2007 Aug;293(2):C783-9.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
20 BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011 Sep 16;146(6):904-17.
21 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
22 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
23 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
24 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.