General Information of Drug Off-Target (DOT) (ID: OTGUZYMJ)

DOT Name Survival of motor neuron-related-splicing factor 30 (SMNDC1)
Synonyms 30 kDa splicing factor SMNrp; SMN-related protein; Survival motor neuron domain-containing protein 1
Gene Name SMNDC1
Related Disease
Skin neoplasm ( )
Spinal muscular atrophy ( )
UniProt ID
SPF30_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4A4F; 4A4H; 8POI
Pfam ID
PF06003
Sequence
MSEDLAKQLASYKAQLQQVEAALSGNGENEDLLKLKKDLQEVIELTKDLLSTQPSETLAS
SDSFASTQPTHSWKVGDKCMAVWSEDGQCYEAEIEEIDEENGTAAITFAGYGNAEVTPLL
NLKPVEEGRKAKEDSGNKPMSKKEMIAQQREYKKKKALKKAQRIKELEQEREDQKVKWQQ
FNNRAYSKNKKGQVKRSIFASPESVTGKVGVGTCGIADKPMTQYQDTSKYNVRHLMPQ
Function Involved in spliceosome assembly.
Tissue Specificity Detected at intermediate levels in skeletal muscle, and at low levels in heart and pancreas.
KEGG Pathway
Spliceosome (hsa03040 )
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

2 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Skin neoplasm DIS16DDV Strong Biomarker [1]
Spinal muscular atrophy DISTLKOB Strong Biomarker [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [3]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [9]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [11]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [11]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [8]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [12]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Survival of motor neuron-related-splicing factor 30 (SMNDC1). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.Colloids Surf B Biointerfaces. 2016 Jul 1;143:156-167. doi: 10.1016/j.colsurfb.2016.03.036. Epub 2016 Mar 15.
2 Fungal Smn and Spf30 homologues are mainly present in filamentous fungi and genomes with many introns: implications for spinal muscular atrophy.Gene. 2012 Jan 10;491(2):135-41. doi: 10.1016/j.gene.2011.10.006. Epub 2011 Oct 13.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.