General Information of Drug Off-Target (DOT) (ID: OTH0J5CV)

DOT Name Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1)
Synonyms EC 3.1.3.16; Nuclear LIM interactor-interacting factor 3; NLI-IF; NLI-interacting factor 3; Small C-terminal domain phosphatase 1; SCP1; Small CTD phosphatase 1
Gene Name CTDSP1
UniProt ID
CTDS1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1T9Z; 1TA0; 2GHQ; 2GHT; 3L0B; 3L0C; 3L0Y; 3PGL; 4YGY; 4YH1; 6DU3
EC Number
3.1.3.16
Pfam ID
PF03031
Sequence
MDSSAVITQISKEEARGPLRGKGDQKSAASQKPRSRGILHSLFCCVCRDDGEALPAHSGA
PLLVEENGAIPKQTPVQYLLPEAKAQDSDKICVVIDLDETLVHSSFKPVNNADFIIPVEI
DGVVHQVYVLKRPHVDEFLQRMGELFECVLFTASLAKYADPVADLLDKWGAFRARLFRES
CVFHRGNYVKDLSRLGRDLRRVLILDNSPASYVFHPDNAVPVASWFDNMSDTELHDLLPF
FEQLSRVDDVYSVLRQPRPGS
Function
Preferentially catalyzes the dephosphorylation of 'Ser-5' within the tandem 7 residue repeats in the C-terminal domain (CTD) of the largest RNA polymerase II subunit POLR2A. Negatively regulates RNA polymerase II transcription, possibly by controlling the transition from initiation/capping to processive transcript elongation. Recruited by REST to neuronal genes that contain RE-1 elements, leading to neuronal gene silencing in non-neuronal cells.
Tissue Specificity Expression is restricted to non-neuronal tissues. Highest expression in skeletal muscle, spleen, lung and placenta.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1) decreases the response to substance of Cisplatin. [12]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [9]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [5]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [6]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [7]
Marinol DM70IK5 Approved Marinol increases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [8]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase 1 (CTDSP1). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.
6 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
7 A genomic approach to predict synergistic combinations for breast cancer treatment. Pharmacogenomics J. 2013 Feb;13(1):94-104. doi: 10.1038/tpj.2011.48. Epub 2011 Nov 15.
8 Single-cell Transcriptome Mapping Identifies Common and Cell-type Specific Genes Affected by Acute Delta9-tetrahydrocannabinol in Humans. Sci Rep. 2020 Feb 26;10(1):3450. doi: 10.1038/s41598-020-59827-1.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
11 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
12 Gene expression analysis using human cancer xenografts to identify novel predictive marker genes for the efficacy of 5-fluorouracil-based drugs. Cancer Sci. 2006 Jun;97(6):510-22. doi: 10.1111/j.1349-7006.2006.00204.x.