General Information of Drug Off-Target (DOT) (ID: OTH6G1CV)

DOT Name Membrane-associated progesterone receptor component 2 (PGRMC2)
Synonyms Progesterone membrane-binding protein; Steroid receptor protein DG6
Gene Name PGRMC2
Related Disease
Neoplasm ( )
Adenocarcinoma ( )
Advanced cancer ( )
Breast adenocarcinoma ( )
Hepatocellular carcinoma ( )
UniProt ID
PGRC2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00173
Sequence
MAAGDGDVKLGTLGSGSESSNDGGSESPGDAGAAAEGGGWAAAALALLTGGGEMLLNVAL
VALVLLGAYRLWVRWGRRGLGAGAGAGEESPATSLPRMKKRDFSLEQLRQYDGSRNPRIL
LAVNGKVFDVTKGSKFYGPAGPYGIFAGRDASRGLATFCLDKDALRDEYDDLSDLNAVQM
ESVREWEMQFKEKYDYVGRLLKPGEEPSEYTDEEDTKDHNKQD
Function
Required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan. May serve as a universal non-classical progesterone receptor in the uterus (Probable). Intracellular heme chaperone required for delivery of labile, or signaling heme, to the nucleus. Plays a role in adipocyte function and systemic glucose homeostasis. In brown fat, which has a high demand for heme, delivery of labile heme in the nucleus regulates the activity of heme-responsive transcriptional repressors such as NR1D1 and BACH1.
Tissue Specificity Expressed by endometrial glands and stroma (at protein level) . Detected in urine (at protein level) .
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Reactome Pathway
RAC2 GTPase cycle (R-HSA-9013404 )
RHOD GTPase cycle (R-HSA-9013405 )
RHOG GTPase cycle (R-HSA-9013408 )
RAC3 GTPase cycle (R-HSA-9013423 )
RHOA GTPase cycle (R-HSA-8980692 )

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Strong Altered Expression [1]
Adenocarcinoma DIS3IHTY Limited Altered Expression [2]
Advanced cancer DISAT1Z9 Limited Altered Expression [2]
Breast adenocarcinoma DISMPHJ0 Limited Biomarker [2]
Hepatocellular carcinoma DIS0J828 Limited Altered Expression [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Membrane-associated progesterone receptor component 2 (PGRMC2). [3]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Membrane-associated progesterone receptor component 2 (PGRMC2). [16]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Membrane-associated progesterone receptor component 2 (PGRMC2). [18]
------------------------------------------------------------------------------------
17 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [4]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [8]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [9]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [10]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [11]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [12]
Folic acid DMEMBJC Approved Folic acid affects the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [13]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [14]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [20]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [21]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Membrane-associated progesterone receptor component 2 (PGRMC2). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Drug(s)

References

1 Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma.World J Gastroenterol. 2018 Mar 14;24(10):1152-1166. doi: 10.3748/wjg.v24.i10.1152.
2 Transcriptional analysis of novel hormone receptors PGRMC1 and PGRMC2 as potential biomarkers of breast adenocarcinoma staging.J Surg Res. 2011 Dec;171(2):615-22. doi: 10.1016/j.jss.2010.04.034. Epub 2010 May 20.
3 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
4 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
5 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
10 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
11 Inorganic arsenic exposure promotes malignant progression by HDAC6-mediated down-regulation of HTRA1. J Appl Toxicol. 2023 Aug;43(8):1214-1224. doi: 10.1002/jat.4457. Epub 2023 Mar 11.
12 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
13 Folate deficiency in normal human fibroblasts leads to altered expression of genes primarily linked to cell signaling, the cytoskeleton and extracellular matrix. J Nutr Biochem. 2007 Aug;18(8):541-52. doi: 10.1016/j.jnutbio.2006.11.002. Epub 2007 Feb 22.
14 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
15 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
19 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
20 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
21 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
22 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.