General Information of Drug Off-Target (DOT) (ID: OTHE4ZEK)

DOT Name Midnolin (MIDN)
Synonyms Midbrain nucleolar protein
Gene Name MIDN
Related Disease
Parkinson disease ( )
UniProt ID
MIDN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00240
Sequence
MEPQPGGARSCRRGAPGGACELGPAAEAAPMSLAIHSTTGTRYDLAVPPDETVEGLRKRL
SQRLKVPKERLALLHKDTRLSSGKLQEFGVGDGSKLTLVPTVEAGLMSQASRPEQSVMQA
LESLTETQVSDFLSGRSPLTLALRVGDHMMFVQLQLAAQHAPLQHRHVLAAAAAAAAARG
DPSIASPVSSPCRPVSSAARVPPVPTSPSPASPSPITAGSFRSHAASTTCPEQMDCSPTA
SSSASPGASTTSTPGASPAPRSRKPGAVIESFVNHAPGVFSGTFSGTLHPNCQDSSGRPR
RDIGTILQILNDLLSATRHYQGMPPSLAQLRCHAQCSPASPAPDLAPRTTSCEKLTAAPS
ASLLQGQSQIRMCKPPGDRLRQTENRATRCKVERLQLLLQQKRLRRKARRDARGPYHWSP
SRKAGRSDSSSSGGGGSPSEASGLGLDFEDSVWKPEVNPDIKSEFVVA
Function
Facilitates the ubiquitin-independent proteasomal degradation of stimulus-induced transcription factors such as FOSB, EGR1, NR4A1, and IRF4 to the proteasome for degradation. Promotes also the degradation of other substrates such as CBX4. Plays a role in inhibiting the activity of glucokinase GCK and both glucose-induced and basal insulin secretion.

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Parkinson disease DISQVHKL Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Midnolin (MIDN). [2]
------------------------------------------------------------------------------------
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Midnolin (MIDN). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Midnolin (MIDN). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Midnolin (MIDN). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Midnolin (MIDN). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Midnolin (MIDN). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Midnolin (MIDN). [8]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Midnolin (MIDN). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Midnolin (MIDN). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Midnolin (MIDN). [11]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Midnolin (MIDN). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Midnolin (MIDN). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Midnolin (MIDN). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Midnolin (MIDN). [15]
KOJIC ACID DMP84CS Investigative KOJIC ACID decreases the expression of Midnolin (MIDN). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)

References

1 Midnolin is a confirmed genetic risk factor for Parkinson's disease.Ann Clin Transl Neurol. 2019 Nov;6(11):2205-2211. doi: 10.1002/acn3.50914. Epub 2019 Oct 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
9 Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol. 2017 May;91(5):2067-2078. doi: 10.1007/s00204-016-1879-4. Epub 2016 Nov 12.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
13 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
14 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
15 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
16 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.