General Information of Drug Off-Target (DOT) (ID: OTIUGMGS)

DOT Name Lymphocyte function-associated antigen 3 (CD58)
Synonyms Ag3; Surface glycoprotein LFA-3; CD antigen CD58
Gene Name CD58
UniProt ID
LFA3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1CCZ; 1CI5; 1QA9
Sequence
MVAGSDAGRALGVLSVVCLLHCFGFISCFSQQIYGVVYGNVTFHVPSNVPLKEVLWKKQK
DKVAELENSEFRAFSSFKNRVYLDTVSGSLTIYNLTSSDEDEYEMESPNITDTMKFFLYV
LESLPSPTLTCALTNGSIEVQCMIPEHYNSHRGLIMYSWDCPMEQCKRNSTSIYFKMEND
LPQKIQCTLSNPLFNTTSSIILTTCIPSSGHSRHRYALIPIPLAVITTCIVLYMNGILKC
DRKPDRTNSN
Function
Ligand of the T-lymphocyte CD2 glycoprotein. This interaction is important in mediating thymocyte interactions with thymic epithelial cells, antigen-independent and -dependent interactions of T-lymphocytes with target cells and antigen-presenting cells and the T-lymphocyte rosetting with erythrocytes. In addition, the LFA-3/CD2 interaction may prime response by both the CD2+ and LFA-3+ cells.
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Epstein-Barr virus infection (hsa05169 )
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )
Cell surface interactions at the vascular wall (R-HSA-202733 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Mitoxantrone DMM39BF Approved Lymphocyte function-associated antigen 3 (CD58) affects the response to substance of Mitoxantrone. [19]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Lymphocyte function-associated antigen 3 (CD58). [1]
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Lymphocyte function-associated antigen 3 (CD58). [9]
------------------------------------------------------------------------------------
18 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Lymphocyte function-associated antigen 3 (CD58). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Lymphocyte function-associated antigen 3 (CD58). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Lymphocyte function-associated antigen 3 (CD58). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [7]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [8]
Quercetin DM3NC4M Approved Quercetin affects the expression of Lymphocyte function-associated antigen 3 (CD58). [10]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Lymphocyte function-associated antigen 3 (CD58). [11]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Lymphocyte function-associated antigen 3 (CD58). [12]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [13]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Lymphocyte function-associated antigen 3 (CD58). [14]
Fenretinide DMRD5SP Phase 3 Fenretinide decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [15]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Lymphocyte function-associated antigen 3 (CD58). [8]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Lymphocyte function-associated antigen 3 (CD58). [10]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Lymphocyte function-associated antigen 3 (CD58). [16]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Lymphocyte function-associated antigen 3 (CD58). [17]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Lymphocyte function-associated antigen 3 (CD58). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
4 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog. 2006 Oct;45(10):752-63.
9 Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol. 2017 May;91(5):2067-2078. doi: 10.1007/s00204-016-1879-4. Epub 2016 Nov 12.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
12 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
13 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 Regulation of lipocalin-2 gene by the cancer chemopreventive retinoid 4-HPR. Int J Cancer. 2006 Oct 1;119(7):1599-606.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
18 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
19 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.