General Information of Drug Off-Target (DOT) (ID: OTJ68IB1)

DOT Name Splicing factor 3A subunit 2 (SF3A2)
Synonyms SF3a66; Spliceosome-associated protein 62; SAP 62
Gene Name SF3A2
Related Disease
Myocardial infarction ( )
UniProt ID
SF3A2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5Z56; 5Z57; 5Z58; 6AH0; 6AHD; 6FF4; 6FF7; 6QX9; 6Y53; 6Y5Q; 7ABG; 7ABH; 7ABI; 7EVO; 7ONB; 7Q4O; 7Q4P; 7QTT; 7VPX; 8CH6; 8HK1
Pfam ID
PF16835 ; PF12874
Sequence
MDFQHRPGGKTGSGGVASSSESNRDRRERLRQLALETIDINKDPYFMKNHLGSYECKLCL
TLHNNEGSYLAHTQGKKHQTNLARRAAKEAKEAPAQPAPEKVKVEVKKFVKIGRPGYKVT
KQRDSEMGQQSLLFQIDYPEIAEGIMPRHRFMSAYEQRIEPPDRRWQYLLMAAEPYETIA
FKVPSREIDKAEGKFWTHWNRETKQFFLQFHFKMEKPPAPPSLPAGPPGVKRPPPPLMNG
LPPRPPLPESLPPPPPGGLPLPPMPPTGPAPSGPPGPPQLPPPAPGVHPPAPVVHPPASG
VHPPAPGVHPPAPGVHPPAPGVHPPTSGVHPPAPGVHPPAPGVHPPAPGVHPPAPGVHPP
APGVHPPPSAGVHPQAPGVHPAAPAVHPQAPGVHPPAPGMHPQAPGVHPQPPGVHPSAPG
VHPQPPGVHPSNPGVHPPTPMPPMLRPPLPSEGPGNIPPPPPTN
Function
Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs. The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing. Within the 17S U2 SnRNP complex, SF3A2 is part of the SF3A subcomplex that contributes to the assembly of the 17S U2 snRNP, and the subsequent assembly of the pre-spliceosome 'E' complex and the pre-catalytic spliceosome 'A' complex. Involved in pre-mRNA splicing as a component of pre-catalytic spliceosome 'B' complexes, including the Bact complex. Interacts directly with the duplex formed by U2 snRNA and the intron.
KEGG Pathway
Spliceosome (hsa03040 )
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Myocardial infarction DIS655KI Strong Genetic Variation [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Splicing factor 3A subunit 2 (SF3A2). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Splicing factor 3A subunit 2 (SF3A2). [8]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Splicing factor 3A subunit 2 (SF3A2). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Splicing factor 3A subunit 2 (SF3A2). [4]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Splicing factor 3A subunit 2 (SF3A2). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Splicing factor 3A subunit 2 (SF3A2). [6]
Selenium DM25CGV Approved Selenium increases the expression of Splicing factor 3A subunit 2 (SF3A2). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Splicing factor 3A subunit 2 (SF3A2). [7]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Splicing factor 3A subunit 2 (SF3A2). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Splicing factor 3A subunit 2 (SF3A2). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 A genome-wide association study identifies PLCL2 and AP3D1-DOT1L-SF3A2 as new susceptibility loci for myocardial infarction in Japanese.Eur J Hum Genet. 2015 Mar;23(3):374-80. doi: 10.1038/ejhg.2014.110. Epub 2014 Jun 11.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
5 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
8 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
9 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
10 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.