General Information of Drug Off-Target (DOT) (ID: OTJ8LZGQ)

DOT Name Receptor expression-enhancing protein 4 (REEP4)
Gene Name REEP4
UniProt ID
REEP4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03134
Sequence
MVSWMICRLVVLVFGMLCPAYASYKAVKTKNIREYVRWMMYWIVFALFMAAEIVTDIFIS
WFPFYYEIKMAFVLWLLSPYTKGASLLYRKFVHPSLSRHEKEIDAYIVQAKERSYETVLS
FGKRGLNIAASAAVQAATKSQGALAGRLRSFSMQDLRSISDAPAPAYHDPLYLEDQVSHR
RPPIGYRAGGLQDSDTEDECWSDTEAVPRAPARPREKPLIRSQSLRVVKRKPPVREGTSR
SLKVRTRKKTVPSDVDS
Function
Microtubule-binding protein required to ensure proper cell division and nuclear envelope reassembly by sequestering the endoplasmic reticulum away from chromosomes during mitosis. Probably acts by clearing the endoplasmic reticulum membrane from metaphase chromosomes.
Tissue Specificity Expressed in circumvallate papillae and testis.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Receptor expression-enhancing protein 4 (REEP4). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Receptor expression-enhancing protein 4 (REEP4). [9]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Receptor expression-enhancing protein 4 (REEP4). [10]
------------------------------------------------------------------------------------
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Receptor expression-enhancing protein 4 (REEP4). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Receptor expression-enhancing protein 4 (REEP4). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Receptor expression-enhancing protein 4 (REEP4). [4]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Receptor expression-enhancing protein 4 (REEP4). [5]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Receptor expression-enhancing protein 4 (REEP4). [6]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Receptor expression-enhancing protein 4 (REEP4). [7]
Testosterone DM7HUNW Approved Testosterone increases the expression of Receptor expression-enhancing protein 4 (REEP4). [8]
Menadione DMSJDTY Approved Menadione affects the expression of Receptor expression-enhancing protein 4 (REEP4). [7]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Receptor expression-enhancing protein 4 (REEP4). [11]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Receptor expression-enhancing protein 4 (REEP4). [12]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Receptor expression-enhancing protein 4 (REEP4). [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
8 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
11 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
12 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
13 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.