General Information of Drug Off-Target (DOT) (ID: OTJNQRC5)

DOT Name Ligand-dependent nuclear receptor corepressor-like protein (LCORL)
Synonyms LCoR-like protein
Gene Name LCORL
Related Disease
Cardiovascular disease ( )
Squamous cell carcinoma ( )
Lung squamous cell carcinoma ( )
UniProt ID
LCORL_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF05225
Sequence
MDKGRERMAAAAAAAAAAAAAAQCRSPRCAAERRGFRRELDSWRHRLMHCVGFESILEGL
YGPRLRRDLSLFEDCEPEELTDWSMDEKCSFCNLQREAVSDCIPSLDSSQSTPTEELSSQ
GQSNTDKIECQAENYLNALFRKKDLPQNCDPNIPLVAQELMKKMIRQFAIEYISKSGKTQ
ENRNGSIGPSIVCKSIQMNQAENSLQEEQEGPLDLTVNRMQEQNTQQGDGVLDLSTKKTS
IKSEESSICDPSSENSVAGRLHRNREDYVERSAEFADGLLSKALKDIQSGALDINKAGIL
YGIPQKTLLLHLEALPAGKPASFKNKTRDFHDSYSYKDSKETCAVLQKVALWARAQAERT
EKSKLNLLETSEIKFPTASTYLHQLTLQKMVTQFKEKNESLQYETSNPTVQLKIPQLRVS
SVSKSQPDGSGLLDVMYQVSKTSSVLEGSALQKLKNILPKQNKIECSGPVTHSSVDSYFL
HGDLSPLCLNSKNGTVDGTSENTEDGLDRKDSKQPRKKRGRYRQYDHEIMEEAIAMVMSG
KMSVSKAQGIYGVPHSTLEYKVKERSGTLKTPPKKKLRLPDTGLYNMTDSGTGSCKNSSK
PV
Function May act as transcription activator that binds DNA elements with the sequence 5'-CCCTATCGATCGATCTCTACCT-3'. May play a role in spermatogenesis.

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Cardiovascular disease DIS2IQDX Strong Genetic Variation [1]
Squamous cell carcinoma DISQVIFL Strong Genetic Variation [2]
Lung squamous cell carcinoma DISXPIBD Limited Genetic Variation [2]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [6]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [7]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [8]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [7]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [9]
Malathion DMXZ84M Approved Malathion increases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [10]
Permethrin DMZ0Q1G Approved Permethrin increases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [8]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Ligand-dependent nuclear receptor corepressor-like protein (LCORL). [11]
------------------------------------------------------------------------------------

References

1 Leveraging Polygenic Functional Enrichment to Improve GWAS Power.Am J Hum Genet. 2019 Jan 3;104(1):65-75. doi: 10.1016/j.ajhg.2018.11.008. Epub 2018 Dec 27.
2 Genome-wide association study of familial lung cancer.Carcinogenesis. 2018 Sep 21;39(9):1135-1140. doi: 10.1093/carcin/bgy080.
3 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
10 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
11 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
12 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.