General Information of Drug Off-Target (DOT) (ID: OTJUCFUA)

DOT Name Lysophospholipase D GDPD1 (GDPD1)
Synonyms EC 3.1.4.-; Glycerophosphodiester phosphodiesterase 4; Glycerophosphodiester phosphodiesterase domain-containing protein 1
Gene Name GDPD1
Related Disease
Retinitis pigmentosa ( )
UniProt ID
GDPD1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
3.1.4.-
Pfam ID
PF03009
Sequence
MSSTAAFYLLSTLGGYLVTSFLLLKYPTLLHQRKKQRFLSKHISHRGGAGENLENTMAAF
QHAVKIGTDMLELDCHITKDEQVVVSHDENLKRATGVNVNISDLKYCELPPYLGKLDVSF
QRACQCEGKDNRIPLLKEVFEAFPNTPINIDIKVNNNVLIKKVSELVKRYNREHLTVWGN
ANYEIVEKCYKENSDIPILFSLQRVLLILGLFFTGLLPFVPIREQFFEIPMPSIILKLKE
PHTMSRSQKFLIWLSDLLLMRKALFDHLTARGIQVYIWVLNEEQEYKRAFDLGATGVMTD
YPTKLRDFLHNFSA
Function
Hydrolyzes lysoglycerophospholipids to produce lysophosphatidic acid (LPA) and the corresponding amines. Shows a preference for 1-O-alkyl-sn-glycero-3-phosphocholine (lyso-PAF), lysophosphatidylethanolamine (lyso-PE) and lysophosphatidylcholine (lyso-PC). May be involved in bioactive N-acylethanolamine biosynthesis from both N-acyl-lysoplasmenylethanolamin (N-acyl-lysoPlsEt) and N-acyl-lysophosphatidylethanolamin (N-acyl-lysoPE). In addition, hydrolyzes glycerophospho-N-acylethanolamine to N-acylethanolamine. Does not display glycerophosphodiester phosphodiesterase activity, since it cannot hydrolyze either glycerophosphoinositol or glycerophosphocholine.
Tissue Specificity Widely expressed with high expression level in testis.
KEGG Pathway
Ether lipid metabolism (hsa00565 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Glycerophospholipid catabolism (R-HSA-6814848 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Retinitis pigmentosa DISCGPY8 Limited Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Lysophospholipase D GDPD1 (GDPD1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Lysophospholipase D GDPD1 (GDPD1). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Lysophospholipase D GDPD1 (GDPD1). [4]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Lysophospholipase D GDPD1 (GDPD1). [5]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Lysophospholipase D GDPD1 (GDPD1). [7]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Lysophospholipase D GDPD1 (GDPD1). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Lysophospholipase D GDPD1 (GDPD1). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Lysophospholipase D GDPD1 (GDPD1). [12]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Lysophospholipase D GDPD1 (GDPD1). [13]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Lysophospholipase D GDPD1 (GDPD1). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Lysophospholipase D GDPD1 (GDPD1). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Lysophospholipase D GDPD1 (GDPD1). [9]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Lysophospholipase D GDPD1 (GDPD1). [11]
------------------------------------------------------------------------------------

References

1 Structural Variants Create New Topological-Associated Domains and Ectopic Retinal Enhancer-Gene Contact in Dominant Retinitis Pigmentosa. Am J Hum Genet. 2020 Nov 5;107(5):802-814. doi: 10.1016/j.ajhg.2020.09.002. Epub 2020 Oct 5.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
5 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
6 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
7 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
8 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
9 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
10 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
14 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.