General Information of Drug Off-Target (DOT) (ID: OTL5X535)

DOT Name Asparaginyl-tRNA synthetase (NARS2)
Synonyms AsnRS; NARS2; EC 6.1.1.22; Asparagine--tRNA ligase, mitochondrial
Gene Name NARS2
Related Disease
Epilepsy ( )
Alzheimer disease ( )
Combined oxidative phosphorylation defect type 24 ( )
Mitochondrial DNA depletion syndrome 4a ( )
Myopathy ( )
Mitochondrial disease ( )
Hearing loss, autosomal recessive ( )
Hearing loss, autosomal recessive 94 ( )
Leigh syndrome ( )
Nonsyndromic genetic hearing loss ( )
UniProt ID
SYNM_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
6.1.1.22
Pfam ID
PF00152 ; PF01336
Sequence
MLGVRCLLRSVRFCSSAPFPKHKPSAKLSVRDALGAQNASGERIKIQGWIRSVRSQKEVL
FLHVNDGSSLESLQVVADSGLDSRELNFGSSVEVQGQLIKSPSKRQNVELKAEKIKVIGN
CDAKDFPIKYKERHPLEYLRQYPHFRCRTNVLGSILRIRSEATAAIHSFFKDSGFVHIHT
PIITSNDSEGAGELFQLEPSGKLKVPEENFFNVPAFLTVSGQLHLEVMSGAFTQVFTFGP
TFRAENSQSRRHLAEFYMIEAEISFVDSLQDLMQVIEELFKATTMMVLSKCPEDVELCHK
FIAPGQKDRLEHMLKNNFLIISYTEAVEILKQASQNFTFTPEWGADLRTEHEKYLVKHCG
NIPVFVINYPLTLKPFYMRDNEDGPQHTVAAVDLLVPGVGELFGGGLREERYHFLEERLA
RSGLTEVYQWYLDLRRFGSVPHGGFGMGFERYLQCILGVDNIKDVIPFPRFPHSCLL
Function
Mitochondrial aminoacyl-tRNA synthetase that catalyzes the specific attachment of the asparagine amino acid (aa) to the homologous transfer RNA (tRNA), further participating in protein synthesis. The reaction occurs in a two steps: asparagine is first activated by ATP to form Asn-AMP and then transferred to the acceptor end of tRNA(Asn) (Probable).
KEGG Pathway
Aminoacyl-tR. biosynthesis (hsa00970 )
Reactome Pathway
Mitochondrial tRNA aminoacylation (R-HSA-379726 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Epilepsy DISBB28L Definitive Genetic Variation [1]
Alzheimer disease DISF8S70 Strong Altered Expression [2]
Combined oxidative phosphorylation defect type 24 DIS8I7AX Strong Autosomal recessive [3]
Mitochondrial DNA depletion syndrome 4a DISU4RVU Strong Genetic Variation [4]
Myopathy DISOWG27 Strong Genetic Variation [4]
Mitochondrial disease DISKAHA3 Moderate Autosomal recessive [5]
Hearing loss, autosomal recessive DIS8G9R9 Supportive Autosomal recessive [5]
Hearing loss, autosomal recessive 94 DIS3YGUR Limited Autosomal recessive [5]
Leigh syndrome DISWQU45 Limited Autosomal recessive [6]
Nonsyndromic genetic hearing loss DISZX61P Limited Autosomal recessive [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
12 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate affects the expression of Asparaginyl-tRNA synthetase (NARS2). [7]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [8]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [9]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [10]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Asparaginyl-tRNA synthetase (NARS2). [11]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [12]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Asparaginyl-tRNA synthetase (NARS2). [14]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Asparaginyl-tRNA synthetase (NARS2). [7]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [15]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Asparaginyl-tRNA synthetase (NARS2). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [17]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Asparaginyl-tRNA synthetase (NARS2). [18]
------------------------------------------------------------------------------------
⏷ Show the Full List of 12 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Asparaginyl-tRNA synthetase (NARS2). [13]
------------------------------------------------------------------------------------

References

1 Lethal NARS2-Related Disorder Associated With Rapidly Progressive Intractable Epilepsy and Global Brain Atrophy.Pediatr Neurol. 2018 Dec;89:26-30. doi: 10.1016/j.pediatrneurol.2018.07.014. Epub 2018 Aug 4.
2 Alzheimer's Disease Risk Variant rs2373115 Regulates GAB2 and NARS2 Expression in Human Brain Tissues.J Mol Neurosci. 2018 Sep;66(1):37-43. doi: 10.1007/s12031-018-1144-9. Epub 2018 Aug 7.
3 Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2). Hum Mutat. 2015 Feb;36(2):222-31. doi: 10.1002/humu.22728.
4 PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder.J Hum Genet. 2017 Apr;62(5):525-529. doi: 10.1038/jhg.2016.163. Epub 2017 Jan 12.
5 Mutations of human NARS2, encoding the mitochondrial asparaginyl-tRNA synthetase, cause nonsyndromic deafness and Leigh syndrome. PLoS Genet. 2015 Mar 25;11(3):e1005097. doi: 10.1371/journal.pgen.1005097. eCollection 2015 Mar.
6 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
7 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
8 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
9 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
10 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
11 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
12 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
13 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
14 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
15 Transcriptional signature of human macrophages exposed to the environmental contaminant benzo(a)pyrene. Toxicol Sci. 2010 Apr;114(2):247-59.
16 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
17 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
18 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.