General Information of Drug Off-Target (DOT) (ID: OTLQ1ZLS)

DOT Name 17S U2 SnRNP complex component HTATSF1 (HTATSF1)
Synonyms HIV Tat-specific factor 1; Tat-SF1
Gene Name HTATSF1
UniProt ID
HTSF1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2DIT; 6N3D; 6N3E; 6N3F; 6NSX; 6Y50; 6Y53; 6Y5Q; 7EVO; 7Q3L; 8HK1
Pfam ID
PF00076
Sequence
MSGTNLDGNDEFDEQLRMQELYGDGKDGDTQTDAGGEPDSLGQQPTDTPYEWDLDKKAWF
PKITEDFIATYQANYGFSNDGASSSTANVEDVHARTAEEPPQEKAPEPTDARKKGEKRKA
ESGWFHVEEDRNTNVYVSGLPPDITVDEFIQLMSKFGIIMRDPQTEEFKVKLYKDNQGNL
KGDGLCCYLKRESVELALKLLDEDEIRGYKLHVEVAKFQLKGEYDASKKKKKCKDYKKKL
SMQQKQLDWRPERRAGPSRMRHERVVIIKNMFHPMDFEDDPLVLNEIREDLRVECSKFGQ
IRKLLLFDRHPDGVASVSFRDPEEADYCIQTLDGRWFGGRQITAQAWDGTTDYQVEETSR
EREERLRGWEAFLNAPEANRGLRRSDSVSASERAGPSRARHFSEHPSTSKMNAQETATGM
AFEEPIDEKKFEKTEDGGEFEEGASENNAKESSPEKEAEEGCPEKESEEGCPKRGFEGSC
SQKESEEGNPVRGSEEDSPKKESKKKTLKNDCEENGLAKESEDDLNKESEEEVGPTKESE
EDDSEKESDEDCSEKQSEDGSEREFEENGLEKDLDEEGSEKELHENVLDKELEENDSENS
EFEDDGSEKVLDEEGSEREFDEDSDEKEEEEDTYEKVFDDESDEKEDEEYADEKGLEAAD
KKAEEGDADEKLFEESDDKEDEDADGKEVEDADEKLFEDDDSNEKLFDEEEDSSEKLFDD
SDERGTLGGFGSVEEGPLSTGSSFILSSDDDDDDI
Function
Component of the 17S U2 SnRNP complex of the spliceosome, a large ribonucleoprotein complex that removes introns from transcribed pre-mRNAs. The 17S U2 SnRNP complex (1) directly participates in early spliceosome assembly and (2) mediates recognition of the intron branch site during pre-mRNA splicing by promoting the selection of the pre-mRNA branch-site adenosine, the nucleophile for the first step of splicing. Within the 17S U2 SnRNP complex, HTATSF1 is required to stabilize the branchpoint-interacting stem loop. HTATSF1 is displaced from the 17S U2 SnRNP complex before the stable addition of the 17S U2 SnRNP complex to the spliceosome, destabilizing the branchpoint-interacting stem loop and allowing to probe intron branch site sequences. Also acts as a regulator of transcriptional elongation, possibly by mediating the reciprocal stimulatory effect of splicing on transcriptional elongation. Involved in double-strand break (DSB) repair via homologous recombination in S-phase by promoting the recruitment of TOPBP1 to DNA damage sites. Mechanistically, HTATSF1 is (1) recruited to DNA damage sites in S-phase via interaction with poly-ADP-ribosylated RPA1 and (2) phosphorylated by CK2, promoting recruitment of TOPBP1, thereby facilitating RAD51 nucleofilaments formation and RPA displacement, followed by homologous recombination ; (Microbial infection) In case of infection by HIV-1, it is up-regulated by the HIV-1 proteins NEF and gp120, acts as a cofactor required for the Tat-enhanced transcription of the virus.
Tissue Specificity Widely expressed.
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Arsenic trioxide DM61TA4 Approved 17S U2 SnRNP complex component HTATSF1 (HTATSF1) increases the response to substance of Arsenic trioxide. [15]
------------------------------------------------------------------------------------
6 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [1]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [9]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [10]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [11]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 Drug(s)
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [2]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [4]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [6]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [7]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [8]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [12]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of 17S U2 SnRNP complex component HTATSF1 (HTATSF1). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
6 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
7 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
8 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
11 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
12 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
13 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
14 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
15 The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics. 2010 Aug 13;3:37. doi: 10.1186/1755-8794-3-37.