General Information of Drug Off-Target (DOT) (ID: OTLV63QV)

DOT Name Glyoxylate reductase/hydroxypyruvate reductase (GRHPR)
Synonyms EC 1.1.1.79; EC 1.1.1.81
Gene Name GRHPR
Related Disease
Chronic renal failure ( )
End-stage renal disease ( )
Primary hyperoxaluria type 2 ( )
Atypical hemolytic uremic syndrome ( )
Hemolytic-uremic syndrome ( )
Nephrocalcinosis ( )
Primary hyperoxaluria ( )
Primary hyperoxaluria type 1 ( )
Prostate cancer ( )
Prostate neoplasm ( )
UniProt ID
GRHPR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2GCG; 2H1S; 2Q50; 2WWR
EC Number
1.1.1.79; 1.1.1.81
Pfam ID
PF00389 ; PF02826
Sequence
MRPVRLMKVFVTRRIPAEGRVALARAADCEVEQWDSDEPIPAKELERGVAGAHGLLCLLS
DHVDKRILDAAGANLKVISTMSVGIDHLALDEIKKRGIRVGYTPDVLTDTTAELAVSLLL
TTCRRLPEAIEEVKNGGWTSWKPLWLCGYGLTQSTVGIIGLGRIGQAIARRLKPFGVQRF
LYTGRQPRPEEAAEFQAEFVSTPELAAQSDFIVVACSLTPATEGLCNKDFFQKMKETAVF
INISRGDVVNQDDLYQALASGKIAAAGLDVTSPEPLPTNHPLLTLKNCVILPHIGSATHR
TRNTMSLLAANNLLAGLRGEPMPSELKL
Function
Enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. Reduces hydroxypyruvate to D-glycerate, glyoxylate to glycolate, oxidizes D-glycerate to hydroxypyruvate.
Tissue Specificity Ubiquitous. Most abundantly expressed in the liver.
KEGG Pathway
Glycine, serine and threonine metabolism (hsa00260 )
Pyruvate metabolism (hsa00620 )
Glyoxylate and dicarboxylate metabolism (hsa00630 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Glyoxylate metabolism and glycine degradation (R-HSA-389661 )
BioCyc Pathway
MetaCyc:HS06275-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic renal failure DISGG7K6 Definitive Genetic Variation [1]
End-stage renal disease DISXA7GG Definitive Genetic Variation [1]
Primary hyperoxaluria type 2 DISGZT3W Definitive Autosomal recessive [2]
Atypical hemolytic uremic syndrome DIS6FUDJ Strong Altered Expression [3]
Hemolytic-uremic syndrome DISSCBGW Strong Biomarker [3]
Nephrocalcinosis DIS5ZVJP Strong Genetic Variation [4]
Primary hyperoxaluria DIS0L16N Strong Genetic Variation [1]
Primary hyperoxaluria type 1 DISS210K Strong Biomarker [5]
Prostate cancer DISF190Y Strong Biomarker [6]
Prostate neoplasm DISHDKGQ Strong Biomarker [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [7]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [8]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [9]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [11]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Glyoxylate reductase/hydroxypyruvate reductase (GRHPR). [14]
------------------------------------------------------------------------------------

References

1 Targeting kidney inflammation as a new therapy for primary hyperoxaluria?.Nephrol Dial Transplant. 2019 Jun 1;34(6):908-914. doi: 10.1093/ndt/gfy239.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Hemolytic Uremic Syndrome in an Infant with Primary Hyperoxaluria Type II: An Unreported Clinical Association.Nephron. 2019;142(3):264-270. doi: 10.1159/000497823. Epub 2019 Mar 19.
4 Whole exome sequencing frequently detects a monogenic cause in early onset nephrolithiasis andnephrocalcinosis.Kidney Int. 2018 Jan;93(1):204-213. doi: 10.1016/j.kint.2017.06.025. Epub 2017 Oct 12.
5 An update on primary hyperoxaluria.Nat Rev Nephrol. 2012 Jun 12;8(8):467-75. doi: 10.1038/nrneph.2012.113.
6 Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model.Prostate. 2007 Jan 1;67(1):83-106. doi: 10.1002/pros.20505.
7 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
8 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
9 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
10 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
14 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
15 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.