General Information of Drug Off-Target (DOT) (ID: OTMH6OWG)

DOT Name Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1)
Synonyms Proline-rich gamma-carboxyglutamic acid protein 1; Proline-rich Gla protein 1
Gene Name PRRG1
UniProt ID
TMG1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00594
Sequence
MGRVFLTGEKANSILKRYPRANGFFEEIRQGNIERECKEEFCTFEEAREAFENNEKTKEF
WSTYTKAQQGESNRGSDWFQFYLTFPLIFGLFIILLVIFLIWRCFLRNKTRRQTVTEGHI
PFPQHLNIITPPPPPDEVFDSSGLSPGFLGYVVGRSDSVSTRLSNCDPPPTYEEATGQVN
LQRSETEPHLDPPPEYEDIVNSNSASAIPMVPVVTTIK
Tissue Specificity Highly expressed in the spinal cord.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
16 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [3]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [4]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [6]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [7]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [8]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [7]
Permethrin DMZ0Q1G Approved Permethrin increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [9]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [10]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [7]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [13]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [14]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [15]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [5]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Transmembrane gamma-carboxyglutamic acid protein 1 (PRRG1). [11]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
6 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
7 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
8 Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat. 2007 Apr;102(2):157-72.
9 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
10 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
11 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
12 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
13 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
14 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
15 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
16 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.