General Information of Drug Off-Target (DOT) (ID: OTNTQT9O)

DOT Name Sodium channel regulatory subunit beta-3 (SCN3B)
Gene Name SCN3B
Related Disease
Arrhythmia ( )
Epilepsy ( )
Paroxysmal familial ventricular fibrillation ( )
Familial atrial fibrillation ( )
Brugada syndrome 1 ( )
Conduction system disorder ( )
Sinoatrial node disorder ( )
Atrial fibrillation ( )
Brugada syndrome 7 ( )
UniProt ID
SCN3B_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4L1D; 7TJ8; 7TJ9
Pfam ID
PF07686
Sequence
MPAFNRLFPLASLVLIYWVSVCFPVCVEVPSETEAVQGNPMKLRCISCMKREEVEATTVV
EWFYRPEGGKDFLIYEYRNGHQEVESPFQGRLQWNGSKDLQDVSITVLNVTLNDSGLYTC
NVSREFEFEAHRPFVKTTRLIPLRVTEEAGEDFTSVVSEIMMYILLVFLTLWLLIEMIYC
YRKVSKAEEAAQENASDYLAIPSENKENSAVPVEE
Function
Voltage-gated sodium channels regulatory subunit that modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with NFASC may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons.
Tissue Specificity Expressed in the atrium.
Reactome Pathway
Phase 0 - rapid depolarisation (R-HSA-5576892 )
Interaction between L1 and Ankyrins (R-HSA-445095 )

Molecular Interaction Atlas (MIA) of This DOT

9 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Arrhythmia DISFF2NI Strong CausalMutation [1]
Epilepsy DISBB28L Strong Biomarker [2]
Paroxysmal familial ventricular fibrillation DISRM7IX Strong Genetic Variation [3]
Familial atrial fibrillation DISL4AGF Supportive Autosomal dominant [4]
Brugada syndrome 1 DISKBA7V Disputed Autosomal dominant [5]
Conduction system disorder DISED5HG Disputed Biomarker [6]
Sinoatrial node disorder DISYJI6J Disputed Biomarker [6]
Atrial fibrillation DIS15W6U Limited Genetic Variation [7]
Brugada syndrome 7 DISTWTOD Limited Autosomal dominant [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [9]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [10]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [11]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [12]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [13]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [14]
Triclosan DMZUR4N Approved Triclosan increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [15]
Folic acid DMEMBJC Approved Folic acid decreases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [19]
Manganese DMKT129 Investigative Manganese increases the expression of Sodium channel regulatory subunit beta-3 (SCN3B). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of Sodium channel regulatory subunit beta-3 (SCN3B). [16]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Sodium channel regulatory subunit beta-3 (SCN3B). [18]
------------------------------------------------------------------------------------

References

1 Postmortem genetic screening for the identification, verification, and reporting of genetic variants contributing to the sudden death of the young.Genome Res. 2016 Sep;26(9):1170-7. doi: 10.1101/gr.195800.115. Epub 2016 Jul 19.
2 Identification of novel gene and pathway targets for human epilepsy treatment.Biol Res. 2016 Jan 7;49:3. doi: 10.1186/s40659-015-0060-5.
3 Loss-of-function mutation of the SCN3B-encoded sodium channel {beta}3 subunit associated with a case of idiopathic ventricular fibrillation.Cardiovasc Res. 2010 Jun 1;86(3):392-400. doi: 10.1093/cvr/cvp417. Epub 2009 Dec 30.
4 Functional dominant-negative mutation of sodium channel subunit gene SCN3B associated with atrial fibrillation in a Chinese GeneID population. Biochem Biophys Res Commun. 2010 Jul 16;398(1):98-104. doi: 10.1016/j.bbrc.2010.06.042. Epub 2010 Jun 15.
5 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
6 Embryonic type Na(+) channel -subunit, SCN3B masks the disease phenotype of Brugada syndrome.Sci Rep. 2016 Sep 28;6:34198. doi: 10.1038/srep34198.
7 Significant association of rare variant p.Gly8Ser in cardiac sodium channel 4-subunit SCN4B with atrial fibrillation.Ann Hum Genet. 2019 Jul;83(4):239-248. doi: 10.1111/ahg.12305. Epub 2019 Mar 1.
8 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
9 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
10 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
11 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
12 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
13 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
14 p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One. 2011 Apr 21;6(4):e19198. doi: 10.1371/journal.pone.0019198.
15 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
16 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
17 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
18 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.