General Information of Drug Off-Target (DOT) (ID: OTPUUELV)

DOT Name ATP-sensitive inward rectifier potassium channel 11 (KCNJ11)
Synonyms IKATP; Inward rectifier K(+) channel Kir6.2; Potassium channel, inwardly rectifying subfamily J member 11
Gene Name KCNJ11
Related Disease
Diabetes mellitus, transient neonatal, 3 ( )
Hyperinsulinemic hypoglycemia, familial, 2 ( )
Monogenic diabetes ( )
Diabetes mellitus, permanent neonatal 2 ( )
Maturity-onset diabetes of the young type 13 ( )
Obsolete diabetes mellitus, noninsulin-dependent ( )
Autosomal dominant hyperinsulinism due to Kir6.2 deficiency ( )
Autosomal recessive hyperinsulinism due to Kir6.2 deficiency ( )
DEND syndrome ( )
Diazoxide-resistant focal hyperinsulinism due to Kir6.2 deficiency ( )
Intermediate DEND syndrome ( )
Maturity-onset diabetes of the young ( )
Permanent neonatal diabetes mellitus ( )
Transient neonatal diabetes mellitus ( )
UniProt ID
KCJ11_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6C3O; 6C3P; 7S5T; 7S5X; 7S5Y; 7S5Z; 7S60; 7S61
Pfam ID
PF01007 ; PF17655
Sequence
MLSRKGIIPEEYVLTRLAEDPAKPRYRARQRRARFVSKKGNCNVAHKNIREQGRFLQDVF
TTLVDLKWPHTLLIFTMSFLCSWLLFAMAWWLIAFAHGDLAPSEGTAEPCVTSIHSFSSA
FLFSIEVQVTIGFGGRMVTEECPLAILILIVQNIVGLMINAIMLGCIFMKTAQAHRRAET
LIFSKHAVIALRHGRLCFMLRVGDLRKSMIISATIHMQVVRKTTSPEGEVVPLHQVDIPM
ENGVGGNSIFLVAPLIIYHVIDANSPLYDLAPSDLHHHQDLEIIVILEGVVETTGITTQA
RTSYLADEILWGQRFVPIVAEEDGRYSVDYSKFGNTVKVPTPLCTARQLDEDHSLLEALT
LASARGPLRKRSVPMAKAKPKFSISPDSLS
Function
This receptor is controlled by G proteins. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. Can be blocked by extracellular barium. Subunit of ATP-sensitive potassium channels (KATP). Can form cardiac and smooth muscle-type KATP channels with ABCC9. KCNJ11 forms the channel pore while ABCC9 is required for activation and regulation.
KEGG Pathway
Insulin secretion (hsa04911 )
GnRH secretion (hsa04929 )
Type II diabetes mellitus (hsa04930 )
Reactome Pathway
ABC-family proteins mediated transport (R-HSA-382556 )
Regulation of insulin secretion (R-HSA-422356 )
Ion homeostasis (R-HSA-5578775 )
Defective ABCC9 causes CMD10, ATFB12 and Cantu syndrome (R-HSA-5678420 )
Defective ABCC8 can cause hypo- and hyper-glycemias (R-HSA-5683177 )
ATP sensitive Potassium channels (R-HSA-1296025 )

Molecular Interaction Atlas (MIA) of This DOT

14 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Diabetes mellitus, transient neonatal, 3 DIS291OS Definitive Autosomal dominant [1]
Hyperinsulinemic hypoglycemia, familial, 2 DIS5DEVG Definitive Autosomal recessive [2]
Monogenic diabetes DISEB8Q0 Definitive Autosomal dominant [2]
Diabetes mellitus, permanent neonatal 2 DISTGFQ7 Strong Autosomal dominant [3]
Maturity-onset diabetes of the young type 13 DISN6PZR Strong Autosomal dominant [3]
Obsolete diabetes mellitus, noninsulin-dependent DISS46MZ Strong Autosomal dominant [3]
Autosomal dominant hyperinsulinism due to Kir6.2 deficiency DISLXSXT Supportive Autosomal dominant [4]
Autosomal recessive hyperinsulinism due to Kir6.2 deficiency DIS4XHXN Supportive Autosomal recessive [1]
DEND syndrome DISRNWGB Supportive Autosomal dominant [5]
Diazoxide-resistant focal hyperinsulinism due to Kir6.2 deficiency DISM0NJG Supportive Autosomal recessive [6]
Intermediate DEND syndrome DISCHN6V Supportive Autosomal dominant [7]
Maturity-onset diabetes of the young DISG75M5 Supportive Autosomal dominant [8]
Permanent neonatal diabetes mellitus DIS5AEXS Supportive Autosomal dominant [9]
Transient neonatal diabetes mellitus DIST826V Supportive Autosomal dominant [9]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [16]
------------------------------------------------------------------------------------
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [11]
Triclosan DMZUR4N Approved Triclosan decreases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [12]
Folic acid DMEMBJC Approved Folic acid decreases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [13]
Tolbutamide DM02AWV Approved Tolbutamide decreases the activity of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [14]
Diazoxide DML1538 Approved Diazoxide decreases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [15]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [18]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of ATP-sensitive inward rectifier potassium channel 11 (KCNJ11). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)

References

1 Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet. 1996 Nov;5(11):1809-12. doi: 10.1093/hmg/5.11.1809.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
4 Clinical characteristics and biochemical mechanisms of congenital hyperinsulinism associated with dominant KATP channel mutations. J Clin Invest. 2008 Aug;118(8):2877-86. doi: 10.1172/JCI35414.
5 The lessons of early-onset monogenic diabetes for the understanding of diabetes pathogenesis. Best Pract Res Clin Endocrinol Metab. 2012 Apr;26(2):171-87. doi: 10.1016/j.beem.2011.12.001.
6 Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet J Rare Dis. 2011 Oct 3;6:63. doi: 10.1186/1750-1172-6-63.
7 Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS One. 2017 Jan 18;12(1):e0170365. doi: 10.1371/journal.pone.0170365. eCollection 2017.
8 Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS One. 2012;7(6):e37423. doi: 10.1371/journal.pone.0037423. Epub 2012 Jun 11.
9 Review on monogenic diabetes. Curr Opin Endocrinol Diabetes Obes. 2011 Aug;18(4):252-8. doi: 10.1097/MED.0b013e3283488275.
10 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
11 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
12 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
13 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
14 Increased ATPase activity produced by mutations at arginine-1380 in nucleotide-binding domain 2 of ABCC8 causes neonatal diabetes. Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18988-92. doi: 10.1073/pnas.0707428104. Epub 2007 Nov 19.
15 Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats. Toxicol Appl Pharmacol. 2013 Feb 1;266(3):375-84. doi: 10.1016/j.taap.2012.11.015. Epub 2012 Nov 28.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4558-66.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Comparison of transcriptome expression alterations by chronic exposure to low-dose bisphenol A in different subtypes of breast cancer cells. Toxicol Appl Pharmacol. 2019 Dec 15;385:114814. doi: 10.1016/j.taap.2019.114814. Epub 2019 Nov 9.