General Information of Drug Off-Target (DOT) (ID: OTQW463T)

DOT Name Histone-lysine N-methyltransferase SETD2 (SETD2)
Synonyms
EC 2.1.1.359; HIF-1; Huntingtin yeast partner B; Huntingtin-interacting protein 1; HIP-1; Huntingtin-interacting protein B; Lysine N-methyltransferase 3A; Protein-lysine N-methyltransferase SETD2; EC 2.1.1.-; SET domain-containing protein 2; hSET2; p231HBP
Gene Name SETD2
Related Disease
SETD2-related neurodevelopmental disorder without or with macrocephaly/overgrowth ( )
Luscan-Lumish syndrome ( )
Rabin-Pappas syndrome ( )
SETD2-related microcephaly-severe intellectual disability-multiple congenital anomalies syndrome ( )
Sotos syndrome ( )
UniProt ID
SETD2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2A7O; 2MDC; 2MDI; 2MDJ; 4FMU; 4H12; 5JJY; 5JLB; 5JLE; 5LSS; 5LSX; 5LSY; 5LSZ; 5LT6; 5LT7; 5LT8; 5V21; 5V22; 6J9J; 6VDB; 7EA8; 7EVR; 7EVS; 7LZB; 7LZD; 7LZF; 7TY2; 7TY3
EC Number
2.1.1.-; 2.1.1.359
Pfam ID
PF17907 ; PF00856 ; PF08236 ; PF00397
Sequence
MKQLQPQPPPKMGDFYDPEHPTPEEEENEAKIENVQKTGFIKGPMFKGVASSRFLPKGTK
TKVNLEEQGRQKVSFSFSLTKKTLQNRFLTALGNEKQSDTPNPPAVPLQVDSTPKMKMEI
GDTLSTAEESSPPKSRVELGKIHFKKHLLHVTSRPLLATTTAVASPPTHAAPLPAVIAES
TTVDSPPSSPPPPPPPAQATTLSSPAPVTEPVALPHTPITVLMAAPVPLPVDVAVRSLKE
PPIIIVPESLEADTKQDTISNSLEEHVTQILNEQADISSKKEDSHIGKDEEIPDSSKISL
SCKKTGSKKKSSQSEGIFLGSESDEDSVRTSSSQRSHDLKFSASIEKERDFKKSSAPLKS
EDLGKPSRSKTDRDDKYFSYSKLERDTRYVSSRCRSERERRRSRSHSRSERGSRTNLSYS
RSERSHYYDSDRRYHRSSPYRERTRYSRPYTDNRARESSDSEEEYKKTYSRRTSSHSSSY
RDLRTSSYSKSDRDCKTETSYLEMERRGKYSSKLERESKRTSENEAIKRCCSPPNELGFR
RGSSYSKHDSSASRYKSTLSKPIPKSDKFKNSFCCTELNEEIKQSHSFSLQTPCSKGSEL
RMINKNPEREKAGSPAPSNRLNDSPTLKKLDELPIFKSEFITHDSHDSIKELDSLSKVKN
DQLRSFCPIELNINGSPGAESDLATFCTSKTDAVLMTSDDSVTGSELSPLVKACMLSSNG
FQNISRCKEKDLDDTCMLHKKSESPFRETEPLVSPHQDKLMSMPVMTVDYSKTVVKEPVD
TRVSCCKTKDSDIYCTLNDSNPSLCNSEAENIEPSVMKISSNSFMNVHLESKPVICDSRN
LTDHSKFACEEYKQSIGSTSSASVNHFDDLYQPIGSSGIASSLQSLPPGIKVDSLTLLKC
GENTSPVLDAVLKSKKSSEFLKHAGKETIVEVGSDLPDSGKGFASRENRRNNGLSGKCLQ
EAQEEGNSILPERRGRPEISLDERGEGGHVHTSDDSEVVFSSCDLNLTMEDSDGVTYALK
CDSSGHAPEIVSTVHEDYSGSSESSNDESDSEDTDSDDSSIPRNRLQSVVVVPKNSTLPM
EETSPCSSRSSQSYRHYSDHWEDERLESRRHLYEEKFESIASKACPQTDKFFLHKGTEKN
PEISFTQSSRKQIDNRLPELSHPQSDGVDSTSHTDVKSDPLGHPNSEETVKAKIPSRQQE
ELPIYSSDFEDVPNKSWQQTTFQNRPDSRLGKTELSFSSSCEIPHVDGLHSSEELRNLGW
DFSQEKPSTTYQQPDSSYGACGGHKYQQNAEQYGGTRDYWQGNGYWDPRSGRPPGTGVVY
DRTQGQVPDSLTDDREEEENWDQQDGSHFSDQSDKFLLSLQKDKGSVQAPEISSNSIKDT
LAVNEKKDFSKNLEKNDIKDRGPLKKRRQEIESDSESDGELQDRKKVRVEVEQGETSVPP
GSALVGPSCVMDDFRDPQRWKECAKQGKMPCYFDLIEENVYLTERKKNKSHRDIKRMQCE
CTPLSKDERAQGEIACGEDCLNRLLMIECSSRCPNGDYCSNRRFQRKQHADVEVILTEKK
GWGLRAAKDLPSNTFVLEYCGEVLDHKEFKARVKEYARNKNIHYYFMALKNDEIIDATQK
GNCSRFMNHSCEPNCETQKWTVNGQLRVGFFTTKLVPSGSELTFDYQFQRYGKEAQKCFC
GSANCRGYLGGENRVSIRAAGGKMKKERSRKKDSVDGELEALMENGEGLSDKNQVLSLSR
LMVRIETLEQKLTCLELIQNTHSQSCLKSFLERHGLSLLWIWMAELGDGRESNQKLQEEI
IKTLEHLPIPTKNMLEESKVLPIIQRWSQTKTAVPPLSEGDGYSSENTSRAHTPLNTPDP
STKLSTEADTDTPKKLMFRRLKIISENSMDSAISDATSELEGKDGKEDLDQLENVPVEEE
EELQSQQLLPQQLPECKVDSETNIEASKLPTSEPEADAEIEPKESNGTKLEEPINEETPS
QDEEEGVSDVESERSQEQPDKTVDISDLATKLLDSWKDLKEVYRIPKKSQTEKENTTTER
GRDAVGFRDQTPAPKTPNRSRERDPDKQTQNKEKRKRRSSLSPPSSAYERGTKRPDDRYD
TPTSKKKVRIKDRNKLSTEERRKLFEQEVAQREAQKQQQQMQNLGMTSPLPYDSLGYNAP
HHPFAGYPPGYPMQAYVDPSNPNAGKVLLPTPSMDPVCSPAPYDHAQPLVGHSTEPLSAP
PPVPVVPHVAAPVEVSSSQYVAQSDGVVHQDSSVAVLPVPAPGPVQGQNYSVWDSNQQSV
SVQQQYSPAQSQATIYYQGQTCPTVYGVTSPYSQTTPPIVQSYAQPSLQYIQGQQIFTAH
PQGVVVQPAAAVTTIVAPGQPQPLQPSEMVVTNNLLDLPPPSPPKPKTIVLPPNWKTARD
PEGKIYYYHVITRQTQWDPPTWESPGDDASLEHEAEMDLGTPTYDENPMKASKKPKTAEA
DTSSELAKKSKEVFRKEMSQFIVQCLNPYRKPDCKVGRITTTEDFKHLARKLTHGVMNKE
LKYCKNPEDLECNENVKHKTKEYIKKYMQKFGAVYKPKEDTELE
Function
Histone methyltransferase that specifically trimethylates 'Lys-36' of histone H3 (H3K36me3) using dimethylated 'Lys-36' (H3K36me2) as substrate. It is capable of trimethylating unmethylated H3K36 (H3K36me0) in vitro. Represents the main enzyme generating H3K36me3, a specific tag for epigenetic transcriptional activation. Plays a role in chromatin structure modulation during elongation by coordinating recruitment of the FACT complex and by interacting with hyperphosphorylated POLR2A. Acts as a key regulator of DNA mismatch repair in G1 and early S phase by generating H3K36me3, a mark required to recruit MSH6 subunit of the MutS alpha complex: early recruitment of the MutS alpha complex to chromatin to be replicated allows a quick identification of mismatch DNA to initiate the mismatch repair reaction. Required for DNA double-strand break repair in response to DNA damage: acts by mediating formation of H3K36me3, promoting recruitment of RAD51 and DNA repair via homologous recombination (HR). Acts as a tumor suppressor. H3K36me3 also plays an essential role in the maintenance of a heterochromatic state, by recruiting DNA methyltransferase DNMT3A. H3K36me3 is also enhanced in intron-containing genes, suggesting that SETD2 recruitment is enhanced by splicing and that splicing is coupled to recruitment of elongating RNA polymerase. Required during angiogenesis. Required for endoderm development by promoting embryonic stem cell differentiation toward endoderm: acts by mediating formation of H3K36me3 in distal promoter regions of FGFR3, leading to regulate transcription initiation of FGFR3. In addition to histones, also mediates methylation of other proteins, such as tubulins and STAT1. Trimethylates 'Lys-40' of alpha-tubulins such as TUBA1B (alpha-TubK40me3); alpha-TubK40me3 is required for normal mitosis and cytokinesis and may be a specific tag in cytoskeletal remodeling. Involved in interferon-alpha-induced antiviral defense by mediating both monomethylation of STAT1 at 'Lys-525' and catalyzing H3K36me3 on promoters of some interferon-stimulated genes (ISGs) to activate gene transcription ; (Microbial infection) Recruited to the promoters of adenovirus 12 E1A gene in case of infection, possibly leading to regulate its expression.
Tissue Specificity Ubiquitously expressed.
KEGG Pathway
Lysine degradation (hsa00310 )
Metabolic pathways (hsa01100 )
Reactome Pathway
PKMTs methylate histone lysines (R-HSA-3214841 )
BioCyc Pathway
MetaCyc:HS17695-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

5 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
SETD2-related neurodevelopmental disorder without or with macrocephaly/overgrowth DIS3ENYF Definitive Autosomal dominant [1]
Luscan-Lumish syndrome DISHR74F Strong Autosomal dominant [2]
Rabin-Pappas syndrome DISKKZRN Strong Autosomal dominant [3]
SETD2-related microcephaly-severe intellectual disability-multiple congenital anomalies syndrome DISQSY1T Strong Autosomal dominant [1]
Sotos syndrome DISN4U1D Supportive Autosomal dominant [4]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [9]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [10]
Berberine DMC5Q8X Phase 4 Berberine increases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [11]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [12]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [14]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [9]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [7]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Histone-lysine N-methyltransferase SETD2 (SETD2). [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Histone-lysine N-methyltransferase SETD2 (SETD2). [13]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Histone-lysine N-methyltransferase SETD2 (SETD2). [15]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Histone-lysine N-methyltransferase SETD2 (SETD2). [16]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Histone-lysine N-methyltransferase SETD2 (SETD2). [16]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012 Dec 21;338(6114):1619-22. doi: 10.1126/science.1227764. Epub 2012 Nov 15.
3 Genotype-phenotype correlation at codon 1740 of SETD2. Am J Med Genet A. 2020 Sep;182(9):2037-2048. doi: 10.1002/ajmg.a.61724. Epub 2020 Jul 24.
4 Mutations in SETD2 cause a novel overgrowth condition. J Med Genet. 2014 Aug;51(8):512-7. doi: 10.1136/jmedgenet-2014-102402. Epub 2014 May 22.
5 Stem cell transcriptome responses and corresponding biomarkers that indicate the transition from adaptive responses to cytotoxicity. Chem Res Toxicol. 2017 Apr 17;30(4):905-922.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Genome-Wide Analysis of Low Dose Bisphenol-A (BPA) Exposure in Human Prostate Cells. Curr Genomics. 2019 May;20(4):260-274. doi: 10.2174/1389202920666190603123040.
8 Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS. 2009 Apr;13(2):93-103. doi: 10.1089/omi.2008.0075.
9 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Berberine acts as a putative epigenetic modulator by affecting the histone code. Toxicol In Vitro. 2016 Oct;36:10-17. doi: 10.1016/j.tiv.2016.06.004. Epub 2016 Jun 13.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
14 BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol. 2012 Dec;92(6):1147-54. doi: 10.1189/jlb.0312165. Epub 2012 Jul 16.
15 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
16 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
17 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.