General Information of Drug Off-Target (DOT) (ID: OTR94VKQ)

DOT Name Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9)
Synonyms Nicotinic acetylcholine receptor subunit alpha-9; NACHR alpha-9
Gene Name CHRNA9
UniProt ID
ACHA9_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4D01; 4UXU; 4UY2; 6HY7
Pfam ID
PF02931 ; PF02932
Sequence
MNWSHSCISFCWIYFAASRLRAAETADGKYAQKLFNDLFEDYSNALRPVEDTDKVLNVTL
QITLSQIKDMDERNQILTAYLWIRQIWHDAYLTWDRDQYDGLDSIRIPSDLVWRPDIVLY
NKADDESSEPVNTNVVLRYDGLITWDAPAITKSSCVVDVTYFPFDNQQCNLTFGSWTYNG
NQVDIFNALDSGDLSDFIEDVEWEVHGMPAVKNVISYGCCSEPYPDVTFTLLLKRRSSFY
IVNLLIPCVLISFLAPLSFYLPAASGEKVSLGVTILLAMTVFQLMVAEIMPASENVPLIG
KYYIATMALITASTALTIMVMNIHFCGAEARPVPHWARVVILKYMSRVLFVYDVGESCLS
PHHSRERDHLTKVYSKLPESNLKAARNKDLSRKKDMNKRLKNDLGCQGKNPQEAESYCAQ
YKVLTRNIEYIAKCLKDHKATNSKGSEWKKVAKVIDRFFMWIFFIMVFVMTILIIARAD
Function
Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding induces a conformation change that leads to the opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reducing the range of dynamic hearing. This may protect against acoustic trauma. May also regulate keratinocyte adhesion.
Tissue Specificity Expressed in cochlea, keratinocytes, pituitary gland, B-cells and T-cells.
KEGG Pathway
Neuroactive ligand-receptor interaction (hsa04080 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Reactome Pathway
Acetylcholine inhibits contraction of outer hair cells (R-HSA-9667769 )
Highly calcium permeable postsynaptic nicotinic acetylcholine receptors (R-HSA-629594 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [1]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [3]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [4]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [5]
Marinol DM70IK5 Approved Marinol decreases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [6]
Nicotine DMWX5CO Approved Nicotine increases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [7]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [10]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [11]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the methylation of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Neuronal acetylcholine receptor subunit alpha-9 (CHRNA9). [9]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Blood transcript immune signatures distinguish a subset of people with elevated serum ALT from others given acetaminophen. Clin Pharmacol Ther. 2016 Apr;99(4):432-41.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
6 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
7 nAChRs-ERK1/2-Egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11beta-HSD2. Toxicol Appl Pharmacol. 2018 Apr 1;344:1-12.
8 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
11 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
12 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.