General Information of Drug Off-Target (DOT) (ID: OTS7GKOI)

DOT Name Claudin-14 (CLDN14)
Gene Name CLDN14
Related Disease
Nonsyndromic genetic hearing loss ( )
Primary biliary cholangitis ( )
Acidosis ( )
Autosomal recessive nonsyndromic hearing loss 29 ( )
Deafness ( )
Hepatocellular carcinoma ( )
Hypercalcaemia ( )
Hypoparathyroidism ( )
Neoplasm ( )
Perrault syndrome ( )
Hearing loss, autosomal recessive ( )
Intellectual disability ( )
Urolithiasis ( )
UniProt ID
CLD14_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00822
Sequence
MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTG
IYQCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAIL
GGTLFILAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTL
LCLSCQDEAPYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV
Function Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell-adhesion activity.
Tissue Specificity Liver, kidney. Also found in ear.
KEGG Pathway
Cell adhesion molecules (hsa04514 )
Tight junction (hsa04530 )
Leukocyte transendothelial migration (hsa04670 )
Pathogenic Escherichia coli infection (hsa05130 )
Hepatitis C (hsa05160 )
Reactome Pathway
Tight junction interactions (R-HSA-420029 )

Molecular Interaction Atlas (MIA) of This DOT

13 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Nonsyndromic genetic hearing loss DISZX61P Definitive Autosomal recessive [1]
Primary biliary cholangitis DIS43E0O Definitive Genetic Variation [2]
Acidosis DISJQTX1 Strong Biomarker [3]
Autosomal recessive nonsyndromic hearing loss 29 DISNC0AY Strong Autosomal recessive [4]
Deafness DISKCLH4 Strong Biomarker [5]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [6]
Hypercalcaemia DISKQ2K7 Strong Biomarker [7]
Hypoparathyroidism DISICS0V Strong Biomarker [8]
Neoplasm DISZKGEW Strong Biomarker [6]
Perrault syndrome DISG2YOV Strong Genetic Variation [9]
Hearing loss, autosomal recessive DIS8G9R9 Supportive Autosomal recessive [10]
Intellectual disability DISMBNXP Limited Genetic Variation [11]
Urolithiasis DISNFTKT Limited Genetic Variation [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Claudin-14 (CLDN14). [13]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Claudin-14 (CLDN14). [24]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Claudin-14 (CLDN14). [14]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Claudin-14 (CLDN14). [15]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Claudin-14 (CLDN14). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Claudin-14 (CLDN14). [17]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Claudin-14 (CLDN14). [18]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Claudin-14 (CLDN14). [19]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Claudin-14 (CLDN14). [20]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Claudin-14 (CLDN14). [21]
Ethanol DMDRQZU Approved Ethanol increases the expression of Claudin-14 (CLDN14). [22]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Claudin-14 (CLDN14). [23]
2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE DMNQL17 Investigative 2-AMINO-1-METHYL-6-PHENYLIMIDAZO[4,5-B]PYRIDINE decreases the expression of Claudin-14 (CLDN14). [25]
Tributylstannanyl DMHN7CB Investigative Tributylstannanyl decreases the expression of Claudin-14 (CLDN14). [26]
Methyl Mercury Ion DM6YEW4 Investigative Methyl Mercury Ion decreases the expression of Claudin-14 (CLDN14). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 A Common Variant in CLDN14 is Associated with Primary Biliary Cirrhosis and Bone Mineral Density.Sci Rep. 2016 Feb 4;6:19877. doi: 10.1038/srep19877.
3 Chronic metabolic acidosis upregulated claudin mRNA expression in the duodenal enterocytes of female rats.Life Sci. 2007 Apr 17;80(19):1729-37. doi: 10.1016/j.lfs.2007.01.063. Epub 2007 Mar 2.
4 Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell. 2001 Jan 12;104(1):165-72. doi: 10.1016/s0092-8674(01)00200-8.
5 Novel CLDN14 mutations in Pakistani families with autosomal recessive non-syndromic hearing loss.Am J Med Genet A. 2012 Feb;158A(2):315-21. doi: 10.1002/ajmg.a.34407. Epub 2012 Jan 13.
6 CLDN14 is epigenetically silenced by EZH2-mediated H3K27ME3 and is a novel prognostic biomarker in hepatocellular carcinoma.Carcinogenesis. 2016 Jun;37(6):557-566. doi: 10.1093/carcin/bgw036. Epub 2016 Mar 31.
7 Claudins and mineral metabolism.Curr Opin Nephrol Hypertens. 2016 Jul;25(4):308-13. doi: 10.1097/MNH.0000000000000239.
8 Parathyroid hormone controls paracellular Ca(2+) transport in the thick ascending limb by regulating the tight-junction protein Claudin14.Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3344-E3353. doi: 10.1073/pnas.1616733114. Epub 2017 Apr 3.
9 Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome.Clin Genet. 2017 Feb;91(2):328-332. doi: 10.1111/cge.12867. Epub 2016 Nov 16.
10 Genetic Hearing Loss Overview. 1999 Feb 14 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
11 tSNP-based identification of allelic loss of gene expression in a patient with a balanced chromosomal rearrangement.Genomics. 2007 Apr;89(4):562-5. doi: 10.1016/j.ygeno.2006.12.006. Epub 2007 Jan 22.
12 Novel Risk Loci Identified in a Genome-Wide Association Study of Urolithiasis in a Japanese Population.J Am Soc Nephrol. 2019 May;30(5):855-864. doi: 10.1681/ASN.2018090942. Epub 2019 Apr 11.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
15 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Global effects of inorganic arsenic on gene expression profile in human macrophages. Mol Immunol. 2009 Feb;46(4):649-56.
20 Minimal peroxide exposure of neuronal cells induces multifaceted adaptive responses. PLoS One. 2010 Dec 17;5(12):e14352. doi: 10.1371/journal.pone.0014352.
21 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
22 Use of transcriptomics in hazard identification and next generation risk assessment: A case study with clothianidin. Food Chem Toxicol. 2022 Aug;166:113212. doi: 10.1016/j.fct.2022.113212. Epub 2022 Jun 8.
23 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Preferential induction of the AhR gene battery in HepaRG cells after a single or repeated exposure to heterocyclic aromatic amines. Toxicol Appl Pharmacol. 2010 Nov 15;249(1):91-100.
26 Inhibition of CXCL12-mediated chemotaxis of Jurkat cells by direct immunotoxicants. Arch Toxicol. 2016 Jul;90(7):1685-94. doi: 10.1007/s00204-015-1585-7. Epub 2015 Aug 28.