General Information of Drug Off-Target (DOT) (ID: OTSAGTP6)

DOT Name Vesicle-trafficking protein SEC22a (SEC22A)
Synonyms SEC22 vesicle-trafficking protein homolog A; SEC22 vesicle-trafficking protein-like 2
Gene Name SEC22A
Related Disease
Parkinson disease ( )
UniProt ID
SC22A_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF13774
Sequence
MSMILSASVIRVRDGLPLSASTDYEQSTGMQECRKYFKMLSRKLAQLPDRCTLKTGHYNI
NFISSLGVSYMMLCTENYPNVLAFSFLDELQKEFITTYNMMKTNTAVRPYCFIEFDNFIQ
RTKQRYNNPRSLSTKINLSDMQTEIKLRPPYQISMCELGSANGVTSAFSVDCKGAGKISS
AHQRLEPATLSGIVGFILSLLCGALNLIRGFHAIESLLQSDGDDFNYIIAFFLGTAACLY
QCYLLVYYTGWRNVKSFLTFGLICLCNMYLYELRNLWQLFFHVTVGAFVTLQIWLRQAQG
KAPDYDV
Function May be involved in vesicle transport between the ER and the Golgi complex.
Reactome Pathway
COPII-mediated vesicle transport (R-HSA-204005 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Parkinson disease DISQVHKL Strong Biomarker [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Vesicle-trafficking protein SEC22a (SEC22A). [2]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Vesicle-trafficking protein SEC22a (SEC22A). [10]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Vesicle-trafficking protein SEC22a (SEC22A). [11]
------------------------------------------------------------------------------------
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [5]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [7]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [8]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Vesicle-trafficking protein SEC22a (SEC22A). [9]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [12]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [13]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of Vesicle-trafficking protein SEC22a (SEC22A). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)

References

1 Aegeline, a natural product from the plant Aegle marmelos, mimics the yeast SNARE protein Sec22p in suppressing -synuclein and Bax toxicity in yeast.Bioorg Med Chem Lett. 2019 Feb 1;29(3):454-460. doi: 10.1016/j.bmcl.2018.12.028. Epub 2018 Dec 13.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
6 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun. 2008 Dec 19;377(3):797-802.
9 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
10 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
11 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
12 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
13 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
14 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.