General Information of Drug Off-Target (DOT) (ID: OTSE8NAO)

DOT Name Leucine-rich repeat-containing protein 47 (LRRC47)
Gene Name LRRC47
UniProt ID
LRC47_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6ZXD; 6ZXE; 6ZXF; 6ZXG
Pfam ID
PF12799 ; PF13855
Sequence
MAAAAVSESWPELELAERERRRELLLTGPGLEERVRAAGGQLPPRLFTLPLLHYLEVSGC
GSLRAPGPGLAQGLPQLHSLVLRRNALGPGLSPELGPLPALRVLDLSGNALEALPPGQGL
GPAEPPGLPQLQSLNLSGNRLRELPADLARCAPRLQSLNLTGNCLDSFPAELFRPGALPL
LSELAAADNCLRELSPDIAHLASLKTLDLSNNQLSEIPAELADCPKLKEINFRGNKLRDK
RLEKMVSGCQTRSILEYLRVGGRGGGKGKGRAEGSEKEESRRKRRERKQRREGGDGEEQD
VGDAGRLLLRVLHVSENPVPLTVRVSPEVRDVRPYIVGAVVRGMDLQPGNALKRFLTSQT
KLHEDLCEKRTAATLATHELRAVKGPLLYCARPPQDLKIVPLGRKEAKAKELVRQLQLEA
EEQRKQKKRQSVSGLHRYLHLLDGNENYPCLVDADGDVISFPPITNSEKTKVKKTTSDLF
LEVTSATSLQICKDVMDALILKMAEMKKYTLENKEEGSLSDTEADAVSGQLPDPTTNPSA
GKDGPSLLVVEQVRVVDLEGSLKVVYPSKADLATAPPHVTVVR

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
14 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [1]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [2]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [3]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [4]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [5]
Etoposide DMNH3PG Approved Etoposide decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [3]
Mitomycin DMH0ZJE Approved Mitomycin decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [3]
Colchicine DM2POTE Approved Colchicine decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [3]
Hydroxyurea DMOQVU9 Approved Hydroxyurea decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [3]
Adenine DMZLHKJ Approved Adenine decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [3]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [6]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [7]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [8]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Leucine-rich repeat-containing protein 47 (LRRC47). [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Leucine-rich repeat-containing protein 47 (LRRC47). [9]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Leucine-rich repeat-containing protein 47 (LRRC47). [9]
------------------------------------------------------------------------------------

References

1 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
2 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
3 Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology. 2014 Jan 6;315:8-16. doi: 10.1016/j.tox.2013.10.009. Epub 2013 Nov 6.
4 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
7 Label-free quantitative proteomic analysis identifies the oncogenic role of FOXA1 in BaP-transformed 16HBE cells. Toxicol Appl Pharmacol. 2020 Sep 15;403:115160. doi: 10.1016/j.taap.2020.115160. Epub 2020 Jul 25.
8 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
9 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
10 Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. Environ Pollut. 2023 Oct 15;335:122359. doi: 10.1016/j.envpol.2023.122359. Epub 2023 Aug 9.