General Information of Drug Off-Target (DOT) (ID: OTTIAF4D)

DOT Name Rho GTPase-activating protein SYDE1 (SYDE1)
Synonyms Synapse defective protein 1 homolog 1; Protein syd-1 homolog 1
Gene Name SYDE1
UniProt ID
SYDE1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00620
Sequence
MAEPLLRKTFSRLRGREKLPRKKSDAKERGHPAQRPEPSPPEPEPQAPEGSQAGAEGPSS
PEASRSPARGAYLQSLEPSSRRWVLGGAKPAEDTSLGPGVPGTGEPAGEIWYNPIPEEDP
RPPAPEPPGPQPGSAESEGLAPQGAAPASPPTKASRTKSPGPARRLSIKMKKLPELRRRL
SLRGPRAGRERERAAPAGSVISRYHLDSSVGGPGPAAGPGGTRSPRAGYLSDGDSPERPA
GPPSPTSFRPYEVGPAARAPPAALWGRLSLHLYGLGGLRPAPGATPRDLCCLLQVDGEAR
ARTGPLRGGPDFLRLDHTFHLELEAARLLRALVLAWDPGVRRHRPCAQGTVLLPTVFRGC
QAQQLAVRLEPQGLLYAKLTLSEQQEAPATAEPRVFGLPLPLLVERERPPGQVPLIIQKC
VGQIERRGLRVVGLYRLCGSAAVKKELRDAFERDSAAVCLSEDLYPDINVITGILKDYLR
ELPTPLITQPLYKVVLEAMARDPPNRVPPTTEGTRGLLSCLPDVERATLTLLLDHLRLVS
SFHAYNRMTPQNLAVCFGPVLLPARQAPTRPRARSSGPGLASAVDFKHHIEVLHYLLQSW
PDPRLPRQSPDVAPYLRPKRQPPLHLPLADPEVVTRPRGRGGPESPPSNRYAGDWSVCGR
DFLPCGRDFLSGPDYDHVTGSDSEDEDEEVGEPRVTGDFEDDFDAPFNPHLNLKDFDALI
LDLERELSKQINVCL
Function
GTPase activator for the Rho-type GTPases. As a GCM1 downstream effector, it is involved in placental development and positively regulates trophoblast cells migration. It regulates cytoskeletal remodeling by controlling the activity of Rho GTPases including RHOA, CDC42 and RAC1.
Tissue Specificity Expressed in trophoblast cells of placental villi.
Reactome Pathway
RAC2 GTPase cycle (R-HSA-9013404 )
RHOQ GTPase cycle (R-HSA-9013406 )
RHOJ GTPase cycle (R-HSA-9013409 )
RAC3 GTPase cycle (R-HSA-9013423 )
RHOF GTPase cycle (R-HSA-9035034 )
CDC42 GTPase cycle (R-HSA-9013148 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Vinblastine DM5TVS3 Approved Rho GTPase-activating protein SYDE1 (SYDE1) affects the response to substance of Vinblastine. [13]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Rho GTPase-activating protein SYDE1 (SYDE1). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Rho GTPase-activating protein SYDE1 (SYDE1). [9]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of Rho GTPase-activating protein SYDE1 (SYDE1). [12]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [2]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [3]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [4]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [6]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [7]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [8]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Rho GTPase-activating protein SYDE1 (SYDE1). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
3 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
4 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
5 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
6 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
7 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
8 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
9 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
10 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
11 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
12 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
13 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.