General Information of Drug Off-Target (DOT) (ID: OTU2OTLL)

DOT Name Trophoblast glycoprotein (TPBG)
Synonyms 5T4 oncofetal antigen; 5T4 oncofetal trophoblast glycoprotein; 5T4 oncotrophoblast glycoprotein; M6P1; Wnt-activated inhibitory factor 1; WAIF1
Gene Name TPBG
UniProt ID
TPBG_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4CNC; 4CNM; 6HBY
Pfam ID
PF13855 ; PF01463 ; PF01462
Sequence
MPGGCSRGPAAGDGRLRLARLALVLLGWVSSSSPTSSASSFSSSAPFLASAVSAQPPLPD
QCPALCECSEAARTVKCVNRNLTEVPTDLPAYVRNLFLTGNQLAVLPAGAFARRPPLAEL
AALNLSGSRLDEVRAGAFEHLPSLRQLDLSHNPLADLSPFAFSGSNASVSAPSPLVELIL
NHIVPPEDERQNRSFEGMVVAALLAGRALQGLRRLELASNHFLYLPRDVLAQLPSLRHLD
LSNNSLVSLTYVSFRNLTHLESLHLEDNALKVLHNGTLAELQGLPHIRVFLDNNPWVCDC
HMADMVTWLKETEVVQGKDRLTCAYPEKMRNRVLLELNSADLDCDPILPPSLQTSYVFLG
IVLALIGAIFLLVLYLNRKGIKKWMHNIRDACRDHMEGYHYRYEINADPRLTNLSSNSDV
Function May function as an inhibitor of Wnt/beta-catenin signaling by indirectly interacting with LRP6 and blocking Wnt3a-dependent LRP6 internalization.
Tissue Specificity
Expressed by all types of trophoblasts as early as 9 weeks of development. Specific for trophoblastic cells except for amniotic epithelium. In adult tissues, the expression is limited to a few epithelial cell types but is found on a variety of carcinoma.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Trophoblast glycoprotein (TPBG). [1]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Trophoblast glycoprotein (TPBG). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Trophoblast glycoprotein (TPBG). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Trophoblast glycoprotein (TPBG). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Trophoblast glycoprotein (TPBG). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Trophoblast glycoprotein (TPBG). [6]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Trophoblast glycoprotein (TPBG). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Trophoblast glycoprotein (TPBG). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Trophoblast glycoprotein (TPBG). [10]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Trophoblast glycoprotein (TPBG). [11]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Trophoblast glycoprotein (TPBG). [12]
Testosterone DM7HUNW Approved Testosterone increases the expression of Trophoblast glycoprotein (TPBG). [13]
Progesterone DMUY35B Approved Progesterone increases the expression of Trophoblast glycoprotein (TPBG). [14]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Trophoblast glycoprotein (TPBG). [15]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Trophoblast glycoprotein (TPBG). [16]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Trophoblast glycoprotein (TPBG). [17]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Trophoblast glycoprotein (TPBG). [18]
APR-246 DMNFADH Phase 2 APR-246 affects the expression of Trophoblast glycoprotein (TPBG). [19]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Trophoblast glycoprotein (TPBG). [21]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Trophoblast glycoprotein (TPBG). [9]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Trophoblast glycoprotein (TPBG). [20]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):2058-63.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
10 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
11 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
12 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
13 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
14 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
15 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
18 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
19 Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 2010 Mar 4;29(9):1329-38. doi: 10.1038/onc.2009.425. Epub 2009 Nov 30.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.